Cho tam giác \(ABC\)vuông tại \(A\).C/m \(\widehat{A}\)=\(90^o\)
Giúp mk lm bài ôn thi học kỳ dạng nâng cao này với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tối thiểu em phải ghi đúng đề ra chứ. Đường cao là đường cao nào? H là điểm nào? Đó là những chi tiết trong đề còn thiếu
Đáp án:
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
c:Xét ΔABD và ΔNCH có
góc ABD=góc NCH
góc D=góc NHC
=>ΔABD đồng dạng với ΔNCH
tam giác ABC vuông tại A thì góc A = 90độ