K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2020

tam giác ABC vuông tại A thì góc A = 90độ

Cho tam giác ABC vuông tại A có AB>AC, M là một điểm tùy ý trên cạnh BC . Qua điểm M, kẻ Mx vuông góc với BC . Tia Mx cắt AB tại I cắt AC tại D.a/ Chứng minh rằng tam giác ABC đồng dạng với tam giác MDCb/ Chứng minh rằng BI.BA=BM.BCc/ CI cắt BD tại K . Chứng minh BI.BA+CI.CK không phụ thuộc vào vị trí của điểm Md/ Cho \(\widehat{ACB}=60^o\), tính \(\frac{S_{CMA}}{S_{CDB}}\)Mình đã lm đc câu a vs câu c ntn:a/...
Đọc tiếp

Cho tam giác ABC vuông tại A có AB>AC, M là một điểm tùy ý trên cạnh BC . Qua điểm M, kẻ Mx vuông góc với BC . Tia Mx cắt AB tại I cắt AC tại D.

a/ Chứng minh rằng tam giác ABC đồng dạng với tam giác MDC

b/ Chứng minh rằng BI.BA=BM.BC

c/ CI cắt BD tại K . Chứng minh BI.BA+CI.CK không phụ thuộc vào vị trí của điểm M

d/ Cho \(\widehat{ACB}=60^o\), tính \(\frac{S_{CMA}}{S_{CDB}}\)

Mình đã lm đc câu a vs câu c ntn:

a/ Vì \(Mx\perp BC\)tại M (gt)

\(\Rightarrow\) \(DM\perp BC\)tại M ( \(D\in Mx\) )

\(\Rightarrow\) \(\widehat{DMC}=90^o\) ( tính chất )

\(\Rightarrow\) Tam giác MDC vuông tại M ( định nghĩa )

Xét tam giác ABC vuông tại A và tam giác MDC vuông tại M có:

\(\widehat{C}\)chung

Vậy tam giác ABC ~ tam giác MDC ( 1 góc nhọn )

 

b/ Vì \(\widehat{DMC}=90^o\) ( chứng minh trong câu a )

\(\Rightarrow\)\(\widehat{DMB}=90^o\) ( 2 góc kề bù )

hay \(\widehat{IMB}=90^o\) ( \(I\in MD\))

\(\Rightarrow\)Tam giác MBI vuông tại M ( định nghĩa )

Xét tam giác ABC vuông tại A và tam giác MBI vuông tại M có:

\(\Rightarrow\widehat{ABC}\left(\widehat{MBI}\right)\)chuing

Vậy tam giác ABC ~ tam giác MBI ( góc nhọn )

\(\Rightarrow\frac{BA}{BM}=\frac{BC}{BI}\)( 2 cặp cạnh tương ứng )

\(\Leftrightarrow BI.BA=BM.BC\)

 

Đó là những gì mình lm đc nên các bn giúp mk câu c vs d nhé !!!

0
NV
10 tháng 9 2021

Tối thiểu em phải ghi đúng đề ra chứ. Đường cao là đường cao nào? H là điểm nào? Đó là những chi tiết trong đề còn thiếu

10 tháng 9 2021

dạ e cảm ơn ạ
hồi nãy e vội quá nên quên ghi ạ

 

11 tháng 2 2021

Đáp án:

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng

image

 

c:Xét ΔABD và ΔNCH có

góc ABD=góc NCH

góc D=góc NHC

=>ΔABD đồng dạng với ΔNCH