cho 2 số hữu tỉ a/b và c/d (a , b , c , d thuộc Z ; b > 0 , d > 0) . chứng minh a/b < c/d khi và chỉ khi d/c < b/a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Ta có: x=-2
nên \(\dfrac{10}{a-3}=-2\)
\(\Leftrightarrow a-3=-5\)
hay a=-2
a) Để x nguyên thì \(10⋮a-3\)
\(\Leftrightarrow a-3\inƯ\left(10\right)\)
\(\Leftrightarrow a-3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(a\in\left\{4;2;5;1;8;-2;13;-7\right\}\)
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
‐ Ta có trên trục số \(2\) điểm \(A\) và \(B\) lần lượt là :\(\frac{a}{b},\frac{c}{d}\)
mà trên trục số\(\frac{a}{b}\) nằm bên trái\(\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}\)
‐ Như ta đã biết : Nếu\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Mà kí hiệu\(\frac{a+c}{b+d}\) là \(C\)
Vậy ta luôn có \(C\) nằm giữa \(A,B\)
\(\Rightarrow\) Trên trục số,giữa \(2\) điểm biểu diễn \(2\) số hữu tỉ \(\frac{a}{b}\) và\(\frac{c}{d}\)
luôn tồn tại \(1\) điểm biểu diễn số hữu tỉ khác \(\left(DPCM\right)\)
NHỚ TK MK NHA
CÁCH 2 NÈ
+) Nếu\(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow2.\frac{a}{b}>\frac{a}{b}+\frac{c}{d}>2.\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}>\frac{\frac{a}{b}+\frac{c}{d}}{2}>\frac{c}{d}\)
\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm \(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(1\right)\)
Tương tự:
+)Nếu\(\frac{a}{b}< \frac{c}{d}\)thì\(\frac{a}{b}< \frac{\frac{a}{b}+\frac{c}{d}}{2}< \frac{c}{d}\)
\(\Rightarrow\frac{\frac{a}{b}+\frac{c}{d}}{2}\)là một điểm hữu tỉ nằm giữa 2 điểm\(\frac{a}{b}\) và\(\frac{c}{d}\)trên trục số\(\left(2\right)\)
Từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\)trên trục số giữa hai điểm hữu tỉ tùy ý a/b và c/d ( a,b,c, d thuộc z ;b,d khác 0)luôn tồn tại một điểm hữu tỉ khác.
NHỚ TK MK NHA
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
Bài làm:
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow\frac{ad}{ac}< \frac{bc}{ac}\Leftrightarrow\frac{d}{c}< \frac{b}{a}\)
Học tốt!!!!