Cho ΔABC, AD là phân giác ∠BAC (D∈BC). Từ B vẽ tia Bx nằm phía ngoài ΔABC sao cho ∠CBx=∠BAD, Bx cắt AD tại E
a) CMinh EB2=ED.EA
b) CMinh tứ giác ABEC nội tiếp được 1 đường tròn
c) Gọi O là tâm đường tròn ngoại tiếp ABEC. Từ A vẽ tiếp tuyến với đường tròn (O) cắt đường thẳng BC tại M. CMinh ΔMAD cân
d) CMinh AD2=AB.AC-DB.DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) OA vuông góc BC do tam giác ABC cân ( t ính chất tiếp tuyến cắt nhau ) . Có OA phân giác nên là đồng thời là đường cao
b) Tứ giác AOBE nột tiếp vì góc ABO= 90 ( tiếp tuyến ), góc AEO=90 ( đường kính đi qua trung điểm nên vuông góc vs dây ấy) => đpcm
c) Có OA.AF= AB2 ( hệ thức lượng ) có tam giác ABM đồng dạng tam giác ANM ( góc A chung, góc ABM= góc BNM ( góc nt và góc tạo bởi tiếp tuyến dây c ung)
==> AM.AN=AB^2 . Vậy có đpcm
d) Có AM/AN= AM/AF
=> Tam giác MAF đồng dạng tam giác OAN ( cạnh góc cạnh) ==> góc M = góc O. Mà góc AMF+ NMF=180 nên góc AON +NMF=180
Vậy có đpcm
Tam giác ABC nội tiếp đường tròn có 3 trường hợp xảy ra: tam giác nhọn, tam giác vuông, tam giác tù ( hình vẽ)
Xét trường hợp: Tam giác ABC vuông.
Khi đó BC là đường kính của đường tròn O
Suy ra, tia Bx vuông góc với bán kính OB
Vậy Bx là tia tiếp tuyến của (O)
Xét trường hợp tam giác ABC nhọn hoặc tù
Giả sử Bx không phải là tiếp tuyến của đường tròn (O).Khi đó,trên cùng nửa mặt phẳng bờ đường thẳng BC chứa tia Bx kẻ tia By là tiếp tuyến của (O) tại B
Ta có:
Bx và By là hai tia khác nhau nằm trên cùng một nửa mặt phẳng bờ BC tạo với BC một góc bằng nhau, trái với tính chất đặt tia trên nửa mặt phẳng .Điều này mâu thuẫn với giả sử Bx không phải là tiếp tuyến của đường tròn (O)
Vậy Bx là tiếp tuyến của đường tròn (O)