K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

░░░░░░░░░░░░▄▄
░░░░░░░░░░░█░░█
░░░░░░░░░░░█░░█
░░░░░░░░░░█░░░█
░░░░░░░░░█░░░░█
███████▄▄█░░░░░██████▄
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█░░░░░░░░░░░░░░█
▓▓▓▓▓▓█████░░░░░░░░░█
██████▀░░░░▀▀█████

                        k mk đi mk k lại cho

a) Xét (O) có

ΔABC nội tiếp đường tròn(A,B,C∈(O))

AB là đường kính của (O)

Do đó: ΔABC vuông tại C(Định lí)

⇒BC⊥AC tại C

⇒BC⊥AE tại C

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAE vuông tại B có BC là đường cao với cạnh huyền AE, ta được:

\(AC\cdot AE=AB^2\)

mà AB không đổi(Do AB là đường kính của (O))

nên \(AC\cdot AE\) không đổi(đpcm)

b) Xét (O) có 

ΔADB nội tiếp đường tròn(A,D,B∈(O))

AB là đường kính của (O)(gt)

Do đó: ΔADB vuông tại D(Định lí)

⇒BD⊥AD tại D

⇒BD⊥AF tại D

Xét ΔABD vuông tại D và ΔAFB vuông tại B có

\(\widehat{DAB}\) chung

Do đó: ΔABD∼ΔAFB(g-g)

\(\widehat{ABD}=\widehat{AFB}\) (hai góc tương ứng)

hay \(\widehat{ABD}=\widehat{DFB}\)(đpcm)

8 tháng 2 2023

cho nua duong tron tam o duong kinh AB , ke tiep tuyen Bx va lay hai diem C va D thuoc nua duong tron , cac tia AC va AD cat Bx lan luot o E, F ( F o giua B va E)  ,1, chung minh rang ABD=DFB  ,2, chung minh rang CEFD la tu guac noi tiep /

 

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0
3 tháng 10 2018

làm hộ mình ý d với

17 tháng 11 2018

Dễ thấy: ABCˆ=CDAˆ=BEAˆABC^=CDA^=BEA^ mà CDAˆ=NDGˆCDA^=NDG^(đối đỉnh)
=>GEMˆ=GDNˆ=>=>GEM^=GDN^=> Tam giác GDN đồng dạng vs Tam giác GEM
=>GNDˆ=GMEˆ=>AMNˆ=ANMˆ=>GND^=GME^=>AMN^=ANM^
Vậy tam giác AMN cân tại A

8 tháng 2 2022

bn tk hén:

undefined

Ghi rõ tk không chuẩn bị câu trả lời pay màu này:)

b: Xét ΔBHA có

BD vừa là đường cao, vừa là phân giác

=>ΔBHA cân tại B

=>D là trung điểm của AH

góc EAD=1/2*sđ cung AD

góc FAD=góc FBC=1/2*sđ cung DC

mà sđ cung AD=sđ cung DC

nên góc EAD=góc FAD

=>AD là phân giác của góc EAF

=>D là trung điểm của EF

Xét tứ giác AEHF có

D là trung điểm chung của AH và EF

AH vuông góc EF

=>AEHF là hình thoi

a: góc ADB=1/2*180=90 độ

=>BD vuông góc AH

góc ACB=1/2*180=90 độ

=>AC vuông góc HB

góc HDF+góc HCF=180 độ

=>HDFC nội tiếp