K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2020

giải hpt: \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)

Cộng hai vế lại với nhau ta có: 

\(4x^2-4xy^2+y^4+x^2-4x+4=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-y^2=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y^2=4\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=2;y=2\left(tm\right)\\x=2;y=-2\end{cases}}\)

Thay x,y vào pt và tính

=> x=2 và y=2 thỏa mãn 

=>(x;y)=(2;2) (t/m)

25 tháng 6 2020

@Linh: Làm nhầm rồi 

HPT\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)

Cộng vế với vế của hai phương trình, ta được:

\(HPT\Leftrightarrow5x^2-4xy^2+y^2-4x+4=0\)

\(\Leftrightarrow\left(4x^2-4xy^2+y^2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy \(\left(x;y\right)=\left(2;4\right)\)
 

17 tháng 1 2019

\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)

17 tháng 1 2019

b,

\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)

Tự xử đoạn còn lại nhé

10 tháng 2 2017

Phương trình (1) có hai cái x^2 là sao?

1 tháng 2 2017

\(pt(2)<=>(2x+y-8)(2x+y+7)=0\)

26 tháng 10 2016

câu 1:

a,x2+2x-4z2+1

=x2+2x.1+12-(2z)2

=(x+1)2-(2z)2

=(x+1-2z)(x+1+2z)

26 tháng 10 2016

bạn nên dùng hằng đẳng thức đã học

12 tháng 12 2017

\(pt\left(1\right)\Leftrightarrow\dfrac{\left(x-y-4\right)\left(x^2+4x+y^2-4y\right)}{x-y}=0\)

\(x\ne y \rightarrow (x-y-4)(x^2+4x+y^2-4y)=0\)