cho phương trình ẩn x sau:
(2x+m)(x-1)-2x^2+mx+m-2=0
tìm các giá trị của m để phương trình có nghiệm là một số dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow2\left(m-1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m-1}\)
Vì \(2>0\)
\(\Rightarrow m-1>0\)
\(\Rightarrow m>1\)
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm
Thay x = -1 vào phương trình (2x - m)(x + 1) - \(2x^2\) - mx + m - 4 = 0 ta có:
(2.(-1) - m)(-1 + 1) - \(2.\left(-1\right)^2\) - m.(-1) + m - 4=0
⇔ (-2 - m).0 - 2 + m + m - 4 = 0
⇔ 2m - 6 = 0
⇔ 2( m - 3) = 0
⇔ m - 3 = 0
⇔ m = 3
Vậy m = 3
(2x-m)(x+1)-2x2-mx+m-4=0
\(\Leftrightarrow\)2x2+2x-mx-m-2x2-mx+m-4=0
\(\Leftrightarrow\)-2mx-4=0
\(\Leftrightarrow\)-2mx=4
Thay x=-1 vào phương trình, ta có:
-2m(-1)=4
\(\Leftrightarrow\)2m=4
\(\Leftrightarrow\)m=2
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)
\(\Leftrightarrow-2x+2mx-m-2=0\)
\(\Leftrightarrow2x\left(m-1\right)=m+2\)
\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)
Để phương trình có nghiệm là 1 số không âm thì:
\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)
\(\Leftrightarrow m>1\) hay \(m\le-2\).
-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.
Sửa đề; Tìm m Để cho phương trình có nghiệm không âm
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
=>\(2x^2-2x+mx-m-2x^2+mx+m-2=0\)
=>x(2m-2)-2=0
=>x(2m-2)=2
Để phương trình có nghiệm không âm thì 2m-2<0
=>m<1
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=1-(2-m)=m-1>0\Leftrightarrow m>1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=2-m\end{matrix}\right.\)
Khi đó:
$2x_1^3+(m+2)x_2^2=5$
$\Leftrightarrow 2x_1^3+(2x_1+2x_2-x_1x_2)x_2^2=5$
$\Leftrightarrow 2(x_1^3+x_2^3)+x_1(2-x_2)x_2^2=5$
\(\Leftrightarrow 2[(x_1+x_2)^3-3x_1x_2(x_1+x_2)]+x_1^2x_2^2=5\)
\(\Leftrightarrow 2[8-6(2-m)]+(2-m)^2=5\)
\(\Leftrightarrow m^2+8m-9=0\Leftrightarrow (m-1)(m+9)=0\)
Vì $m>1$ nên không có giá trị nào của $m$ thỏa mãn.