X^2 +1 + √x^2-4x+1 >= 3√x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 là 9/4 tại x = 3/2
2) Ta có : -(x2 + y2) + x + 3y+ 10 = -x2 - y2 + x + 3y + 10 = -(x2 - x + 1/4) - (y2 -3y + 9/4) + 25/2 = -(x - 1/2)2 - (y - 3/2)2 + 25/2
Ta luôn có: -(x - 1/2)2 \(\le\)0 \(\forall\)x
-(y - 3/2)2 \(\le\)0 \(\forall\)y
=> -(x - 1/2)2 - (y - 3/2)2 + 25/2 \(\le\)25/2 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy ...
Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.
Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:
- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.
- Vẽ đường thẳng EF.
- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD,
BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho
0
https://olm.vn/hoi-dap/detail/227952918582.html vào link này xem câu a nha Lê Phương Nhung
b)Q = (x - 1)3 - 4x(x + 1)(x - 1) + 3(x - 1)(x2 + x + 1)
Q = (x - 1)3 - 4x(x2 - 1) + 3(x3 - 1)
Thay x = -2 vào Q ta dc :
(-3)3 - 4 . (-2) . 3 + 3 . (-9) = -27 + 24 - 27 = -30
a) 3x-7>4x+2
\(\Leftrightarrow3x-4x>2+7\)
\(\Leftrightarrow-x>9\Leftrightarrow x< -9\)
Vậy S={x<9|x\(\in R\)}
b) 2(x-3)<3-5(2x-1)+4x
\(\Leftrightarrow2x-6< 3-10x+5+4x\)
\(\Leftrightarrow2x+10x-4x< 3+5+6\)
\(\Leftrightarrow8x< 14\Leftrightarrow x< \dfrac{7}{4}\)
Vậy S={x<\(\dfrac{7}{4}\)|x\(\in R\)}
c) (x-2)2+x(x-3)<2x(x-3)+1
\(\Leftrightarrow x^2-4x+4+x^2-3x< 2x^2-6x+1\)
\(\Leftrightarrow-x< -3\)
\(\Leftrightarrow x>3\)
Vậy S =\(\left\{x>3|x\in R\right\}\)
d) \(\dfrac{x-1}{3}-x+1>\dfrac{2x-3}{2}\)
\(\Leftrightarrow2x-2-6x+6>6x-9\)
\(\Leftrightarrow-10x>-13\Leftrightarrow x< \dfrac{13}{10}\)
Vậy S=\(\left\{x< \dfrac{13}{10}|x\in R\right\}\)
Biểu diễn tập nghiệm thì bạn tự làm
\(x^2+1+\sqrt{x^2}-4x+1\ge3\sqrt{x}\)
\(\Leftrightarrow x^2+3-3x\ge3\sqrt{x}\)
\(\Leftrightarrow\left(x^2+3-3x\right)^2\ge9x\)
\(\Leftrightarrow x^4+15x^2-6x^3+9-18x\ge9x\)
\(\Leftrightarrow x^4+15x^2-6x^3+9-27x\ge0\)
Mình nghĩ đề này là: \(x^2+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
Nhưng mình vẫn không nghĩ đây là đề chính xác. Bạn xem lại đề ạ.