Tìm tất cả các số tự nhiên n sao cho \(n^3+3n^2+n+3\) là lũy thừa của một số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n!+5=x3 (n,x thuộc N)
Xét n từ 0 đến 9: Chỉ có số 5 thỏa mãn điều kiện.
Xét n lớn hơn 10: Khi đó n! sẽ có ít nhất 2 thừa số 5 và 5 thừa số 2 => Sẽ có đuôi là 00 => n!+5 có đuôi là 05=> n!+5 chia hết cho 5=> x3 chia hết cho 5=> x chỉ có đuôi là 5 => x3 có đuôi là 25 hoặc 75=> không có số nào thỏa mãn đk.
Vậy n=5.
\(P=3n^3-7n^2+3n+6\)
\(=3n^3+2n^2-9n^2-6n+9n+6\)
\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)
\(=\left(3n+2\right)\left(n^2-3n+3\right)\)
để p là nguyên tố thì 3n+2 hoặc n2-3n+3 phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
*3n+2=1=>n=-1/3
*n2-3n+3=1<=>n2-3n+2=0
\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)
nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)
vậy n=1
\(P=n^3+7n^2+25n+39=\left(n+3\right)\left(n^2+4n+13\right)\)
Hiển nhiên \(\left\{{}\begin{matrix}n+3>1\\n^2+4n+13>1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n+3=p^a\\n^2+4n+13=p^b\end{matrix}\right.\) với \(b>a>0\)
\(\Rightarrow\left\{{}\begin{matrix}n+3⋮p\\n^2+4n+13⋮p\end{matrix}\right.\) \(\Rightarrow n^2+4n+13-\left(n+3\right)\left(n+1\right)⋮p\)
\(\Rightarrow10⋮p\Rightarrow\left[{}\begin{matrix}p=2\\p=5\end{matrix}\right.\)
- TH1: \(p=2\Rightarrow n+3=2^a\)
Do n nguyên dương \(\Rightarrow n+3\ge4\Rightarrow a\ge2\Rightarrow2^a⋮4\)
\(\Rightarrow n+3⋮4\Rightarrow n=4k+1\)
Đồng thời \(n^2+4n+13=2^b\), hiển nhiên \(b>2\Rightarrow n^2+4n+13⋮4\)
\(\Rightarrow\left(4k+1\right)^2+4\left(4k+1\right)+13⋮4\)
\(\Rightarrow4k\left(4k+6\right)+18⋮4\) (vô lý)
\(\Rightarrow p=2\) không thỏa mãn
TH2: \(p=5\) \(\Rightarrow\left\{{}\begin{matrix}n+3=5^a\\n^2+4n+13=5^b\end{matrix}\right.\)
\(\Rightarrow\left(n+1\right)\left(n+3\right)+10=5^b\)
\(\Rightarrow5^a\left(5^a-2\right)+10=5^b\)
\(\Rightarrow5^{a-1}\left(5^a-2\right)+2=5^{b-1}\)
- Với \(a=1\Rightarrow b=2\)
- Với \(a>1\Rightarrow\) vế trái chia 5 dư 2, vế phải chia hết cho 5
\(\Rightarrow\) Không tồn tại a;b nguyên thỏa mãn
Vậy \(a=1\Rightarrow n=5^1-3=2\)
1)B(12)=0;12;24;36;48;60;72;84;96;108;120;.. Trong những số trên có 12;24;60;120 là ước của 120 2)Nếu n là chẵn=>(n+4).(n+7)=chẵn.lẻ=chẵn. Nếu n là lẻ=>(n+4).(n+7)=lẻ.chẵn=chẵn. 4)Để 43* chia hết cho 5=>*=0 hoặc 5. Nếu n=0 thì 43* ko chia hết cho 3(vì 4+3+0ko chia hết cho 3) Nếu n=5 thì 43* chia hết cho 5(vì 4+3+5chia hết cho 3) 5)95=5.19;63=7.3.3;123=3.41;2014=2.1007 6)a)3 mũ 7;b)2 mũ 3 7)Số chia hết cho 2;5 luôn có hàng đơn vị=0=>2540 là đáp án. Câu 4 mình chỉ biết là thương.số chia=209 nhưng 209 ko phải số nguyên tố.