K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
27 tháng 10 2021

a) \(3n+41=3n+6+35=3\left(n+2\right)+35⋮\left(n+2\right)\Leftrightarrow35⋮\left(n+2\right)\)

mà \(n\)là số tự nhiên nên \(n+2\inƯ\left(35\right)=\left\{5,7,35\right\}\)

\(\Leftrightarrow n\in\left\{3,5,33\right\}\).

b) Dễ thấy \(n\ge5\).

Khi đó \(n\)có dạng \(3k+1\)hoặc \(3k+2\).

Với \(n=3k+2\)\(n+4=3k+2+4=3k+6⋮3\)mà \(n+4>3\)nên không là số nguyên tố. 

Với \(n=3k+1\)\(n-4=3k+1-4=3k-3⋮3\).

\(n-4=3\Leftrightarrow n=7\)thử lại thỏa mãn. 

\(n-4>3\)khi đó không là số nguyên tố.

Vậy \(n=7\).

n là số 4

vì 4+1=5 là số nguyên tố

4+3=7 là số nguyên tố

4+7=11 là số nguyên tố

4+9=13 là số nguyên tố

4+13=17 là số nguyên tố

4+15=19 là số nguyên tố.

tk nha

14 tháng 7 2017

Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4

8 tháng 1 2018

Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

13 tháng 5 2015

p=2 thì p^4+2 là hợp số

p=3 =>p^4+2=83 là số nguyên tố

với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số

vậy p=3

14 tháng 5 2015

giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương

Đặt  2n + 2003 = k2        (1)      và  3n + 2005 = m2              (2)   (k, m \(\in\) N)

trừ theo từng vế của (1), (2) ta có: 

 n + 2 = m2 - k2

khử n từ (1) và (2)  =>  3k2  - 2m2 = 1999            (3)

từ (1)   =>  k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1)  - 2m2 = 1999 

<=> 2m= 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2             (4)

vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) =>  m2 chia 4 dư 2, vô lý

vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán