Tìm giá trị của tham số m để mọi x
ϵ [-1;1] đều là nghiệm của bất phương trình 3x2-2(m+5)x-m2+2m+8 ≤ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
Chọn C.
m(x - m) - (x - 1) ≥ 0 ⇔ (m - 1)x ≥ m 2 - 1.
+) m = 1 ⇒ x ∈ R. (không thỏa)
+) Xét m > 1 thì (1) ⇔ x ≥ m + 1 không thỏa điều kiện nghiệm đã cho.
+) Xét m < 1 thì (1) ⇔ x ≥ m + 1 thỏa điều kiện nghiệm đã cho.
Vậy m < 1.
anh Tâm lý luận phần m>1 và m<1 hình như bị nhầm lẫn và không rõ ràng
`@TH1: m-1=0<=>m=1`
`=>2x+1 > 0<=>x > -1/2`
`=>m=1` loại
`@TH2: m-1 ne 0<=>m ne 1`
`=>(m-1)x^2-2(m-2)x+2-m > 0 AA x in RR`
`=>{(m-1 > 0),(\Delta' < 0):}`
`<=>{(m > 1),((m-2)^2-(2-m)(m-1) < 0):}`
`<=>{(m > 1),(3/2 < m < 2):}`
`=>3/2 < m < 2`
\(3x^2-2\left(m+5\right)x-m^2+2m+8\le0\)
Nếu \(m>-\frac{1}{2}\)
\(pt\Leftrightarrow\frac{-m+4}{3}\le x\le m+2\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\frac{-m+4}{3}\le-1\\m+2\ge1\end{matrix}\right.\Rightarrow m\ge7\)
Nếu \(m< -\frac{1}{2}\)
\(pt\Leftrightarrow m+2\le x\le\frac{-m+4}{3}\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\frac{-m+4}{3}\ge1\\m+2\le-1\end{matrix}\right.\Rightarrow m\le-3\)
Nếu \(m=-\frac{1}{2}\Rightarrow x=\frac{3}{2}\)
Vậy \(m\le-3;m\ge7\)