Giải rõ giúp mình vớii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow3x\left(x^2-25\right)=0\\ \Rightarrow3x\left(x-5\right)\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
1)Tco ABCD là hình chữ nhật ( ADC=DCB=ABC=\(90^o\))
=> DC= AB=1,5(m)
=>AD=BC=4(m)
Xét tam giác ACE vuông tại A có đường cao AD
=>\(AD^2=DC.DE\)
\(\Leftrightarrow DE=\dfrac{AD^2}{DC}=\dfrac{16}{1,5}=10,7\)(m)
\(\Leftrightarrow CE=DE+DC=1,5+10,7=12,2\left(m\right)\)
Cái này mình trước luôn nha: Mình sẽ tính diện tích 1 tam giác trước, rồi sau đó nhân cái đó với 2 là ra
\(S_{Tamgiác}=\dfrac{1}{2}\cdot6\cdot6\cdot sin30=9\left(cm^2\right)\)
\(S_{THOI}=9\cdot2=18\left(cm^2\right)\)
\(9,PT\Leftrightarrow x-6=3x-7\left(x\ge6\right)\\ \Leftrightarrow x=\dfrac{1}{2}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\\ 10,PT\Leftrightarrow3x-2=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\\ \Leftrightarrow4x^2-7x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{4}\end{matrix}\right.\left(ktm\right)\Leftrightarrow x\in\varnothing\\ 11,PT\Leftrightarrow\sqrt{x^2+x-1}=2-x\left(x\le2\right)\\ \Leftrightarrow x^2+x-1=x^2-4x+4\\ \Leftrightarrow5x=5\Leftrightarrow x=1\left(tm\right)\\ 12,PT\Leftrightarrow\left(\sqrt{20-x}-4\right)+\left(\sqrt{x+5}-3\right)=0\left(5\le x\le20\right)\\ \Leftrightarrow\dfrac{4-x}{\sqrt{20-x}+4}+\dfrac{x-4}{\sqrt{x+5}+3}=0\\ \Leftrightarrow\left(x-4\right)\left(\dfrac{1}{\sqrt{x+5}+3}-\dfrac{1}{\sqrt{20-x}+4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\\dfrac{1}{\sqrt{x+5}+3}=\dfrac{1}{\sqrt{20-x}+4}\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\sqrt{x+5}+3=\sqrt{20-x}+4\\ \Leftrightarrow\left(\sqrt{x+5}-4\right)-\left(\sqrt{20-x}-3\right)=0\\ \Leftrightarrow\dfrac{x-11}{\sqrt{x+5}+4}+\dfrac{x-11}{\sqrt{20-x}+3}=0\\ \Leftrightarrow\left(x-11\right)\left(\dfrac{1}{\sqrt{x+5}+4}+\dfrac{1}{\sqrt{20-x}+3}\right)=0\\ \Leftrightarrow x=11\left(\dfrac{1}{\sqrt{x+5}+4}+\dfrac{1}{\sqrt{20-x}+3}>0\right)\\ \text{Vậy PT có nghiệm }x\in\left\{4;11\right\}\)
\(13,PT\Leftrightarrow\sqrt{x-1}+\sqrt{3x-2}=\sqrt{5x+1}\left(x\ge-\dfrac{1}{5}\right)\\ \Leftrightarrow4x-3+2\sqrt{\left(x-1\right)\left(3x-2\right)}=5x+1\\ \Leftrightarrow x+4=2\sqrt{3x^2-5x+2}\\ \Leftrightarrow x^2+8x+16=12x^2-20x+8\\ \Leftrightarrow11x^2-28x-8=0\\ \Delta'=14^2+8\cdot11=284\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14-2\sqrt{71}}{11}\\x=\dfrac{14+2\sqrt{71}}{11}\end{matrix}\right.\)
\(14,ĐK:x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\)
\(PT\Leftrightarrow2\sqrt{a^2-1+2a}-a=4\\ \Leftrightarrow2\sqrt{a^2+2a-1}=a+4\\ \Leftrightarrow4a^2+8a-4=a^2+8a+16\\ \Leftrightarrow3a^2-20=0\\ \Leftrightarrow a^2=\dfrac{20}{3}\Leftrightarrow x+1=\dfrac{20}{3}\Leftrightarrow x=\dfrac{17}{3}\left(tm\right)\)
\(15,ĐK:-3\le x\le6\)
Đặt \(\sqrt{x+3}+\sqrt{6-x}=a\ge0\)
\(\Leftrightarrow\dfrac{a^2-9}{2}=\sqrt{\left(x+3\right)\left(6-x\right)}\\ PT\Leftrightarrow a-\dfrac{a^2-9}{2}=3\\ \Leftrightarrow2a-a^2+9=6\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=3\left(a\ge0\right)\\ \Leftrightarrow\sqrt{x+3}+\sqrt{6-x}=3\\ \Leftrightarrow\sqrt{x+3}-3+\sqrt{6-x}=0\\ \Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}-\dfrac{x-6}{\sqrt{6-x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\\dfrac{1}{\sqrt{x+3}+3}=\dfrac{1}{\sqrt{6-x}}\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\sqrt{x+3}+3=\sqrt{6-x}\\ \Leftrightarrow\sqrt{x+3}-\left(\sqrt{6-x}-3\right)=0\\ \Leftrightarrow\dfrac{x+3}{\sqrt{x+3}}+\dfrac{x+3}{\sqrt{6-x}+3}=0\\ \Leftrightarrow x=-3\left(\dfrac{1}{\sqrt{x+3}}+\dfrac{1}{\sqrt{6-x}+3}>0\right)\\ \text{Vậy PT có nghiệm }x\in\left\{6;-3\right\}\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;-7\right)\\\overrightarrow{BC}=\left(4;8\right)\\\overrightarrow{AC}=\left(8;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BC}+\overrightarrow{AC}=\left(12,9\right)\)
\(\Rightarrow\overrightarrow{AB}.\left(\overrightarrow{BC}+\overrightarrow{AC}\right)=4.12-7.9=...\)
b. Gọi \(H\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}=\left(x+3;y-5\right)\\\overrightarrow{BH}=\left(x-1;y+2\right)\\\end{matrix}\right.\)
Do \(AH\perp BC\Rightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)
\(\Rightarrow4\left(x+3\right)+8\left(y-5\right)=0\)
\(\Rightarrow x+2y=7\) (1)
Do H thuộc BC \(\Rightarrow\dfrac{x-1}{4}=\dfrac{y+2}{8}\Rightarrow2x-y=4\Rightarrow y=2x-4\)
Thế vào (1) \(\Rightarrow x+2\left(2x-4\right)=7\Rightarrow x=3\Rightarrow y=2\)
\(\Rightarrow H\left(3;2\right)\)
Gọi chiều rộng là x
Chiều dài là 30-x
Theo đề, ta có: (x-2)(36-x)=x(30-x)+16
\(\Leftrightarrow36x-x^2-72+2x=30x-x^2+16\)
=>38x-72=30x+16
=>8x=88
hay x=11
Vậy: Chiều rộng là 11m
Chiều dài là 19m
\(a,=8\left(x^2-2xy+y^2\right)=8\left(x-y\right)^2\\ b,=9\left(x^2-y^2\right)=9\left(x-y\right)\left(x+y\right)\\ c,=\left(x^2-y^2\right)-\left(9x+9y\right)\\ =\left(x-y\right)\left(x+y\right)-9\left(x+y\right)=\left(x+y\right)\left(x-y-9\right)\\ d,=3\left(x^2-4x+4-4y^2\right)=3\left[\left(x-2\right)^2-4y^2\right]\\ =3\left(x-2y-2\right)\left(x+2y-2\right)\\ e,=4x^2+4x+9x+9=4x\left(x+1\right)+9\left(x+1\right)\\ =\left(4x+9\right)\left(x+1\right)\\ f,Sai.đề\)
a) \(8x^2-16xy+8y^2=8\left(x^2-2xy+y^2\right)=8\left(x-y\right)^2\)
b) \(9x^2-9y^2=9\left(x^2-y^2\right)=9\left(x-y\right)\left(x+y\right)\)
c) \(x^2-9x-9y-y^2=\left(x^2-y^2\right)-\left(9x+9y\right)=\left(x-y\right)\left(x+y\right)-9\left(x+y\right)=\left(x+y\right)\left(x-y-9\right)\)
d) \(3x^2-12x+12-12y^2=3\left(x^2-4x+4-4y^2\right)=3\left[\left(x-2\right)^2-4y^2\right]=3\left(x-2-4y\right)\left(x-2+4y\right)\)
e) \(4x^2+13x+9=\left(4x^2+4x\right)+\left(9x+9\right)=4x\left(x+1\right)+9\left(x+1\right)=\left(x+1\right)\left(4x+9\right)\)