\(^{\left(3x-7\right)^{2009}}=\left(3x-7\right)^{2007}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không hiểu ý bạn?
Tại sao (3x - 7)2009 = (3x - 7)2007.
Cùng cơ số mà khác mũ số sau bằng nhau được!
(3x-7)^2009=(3x-7)^2007
=> (3x-7)^2009-(3x-7)^2007=0
(=) (3x-7)^2007.[(3x-7)^2-1]=0
=>\(\left[{}\begin{matrix}\left(3x-7\right)^{2009}=0\\\left[\left(3x-7\right)^2-1\right]=0\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}3x-7=0\\\left(3x-7\right)^2=1\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}3x=7\\3x-7=1\\3x-7=-1\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}x=\dfrac{7}{3}\\3x=8\\3x=6\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)
học tốt
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) chia 2 vế cho \(x^2\), pt tương đương:
\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\\\left(x+2\right)\left(2x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Câu a chắc là đề sai, vì nghiệm vô cùng xấu, tử số của phân thức cuối cùng là \(x+17\) mới hợp lý
b.
Đặt \(x+3=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=14\)
\(\Leftrightarrow t^4+6t^2-6=0\) (đến đây đoán rằng bạn tiếp tục ghi sai đề, nhưng thôi cứ giải tiếp)
\(\Rightarrow\left[{}\begin{matrix}t^2=-3+\sqrt{15}\\t^2=-3-\sqrt{15}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow t=\pm\sqrt{-3+\sqrt{15}}\Rightarrow x=-3\pm\sqrt{-3+\sqrt{15}}\)
Câu c chắc cũng sai đề, vì lên lớp 8 rồi không ai cho đề kiểu này cả, người ta sẽ rút gọn luôn số 1 bên trái và 60 bên phải.
a)\(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1-\frac{x}{2009}+1\)
\(\Leftrightarrow\frac{2-x}{2007}+\frac{2007}{2007}=\frac{1-x}{2008}+\frac{2008}{2008}-\frac{x}{2009}+\frac{2009}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}-\frac{2009-x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}+\frac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\).Do \(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\ne0\)
\(\Leftrightarrow x=2009\)
b)\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
\(\Leftrightarrow\left(12^2x^2+2\cdot12\cdot7x+7^2\right)\left(6x^2+7x+2\right)-3=0\)
\(\Leftrightarrow\left[24\left(6x^2+7x+2\right)+1\right]\left(6x^2+7x+2\right)-3=0\)
Đặt \(t=6x^2+7x+2\) ta có:
\(\left(24t+1\right)t-3=0\)\(\Leftrightarrow12t^2+t-3=0\)
Suy ra t rồi tìm đc x
a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)
\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)
\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow x+8-12+20x=0\)
\(\Leftrightarrow21x-4=0\)
\(\Leftrightarrow21x=4\)
\(\Leftrightarrow x=\dfrac{4}{21}\)
Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)
Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!
\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)
\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
Ta có: \(\left\{{}\begin{matrix}\left(3x-33\right)^{2008}\ge0\\\left|y-7\right|^{2009}\ge0\end{matrix}\right.\Rightarrow\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\ge0\)
Mà \(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-33\right)^{2008}=0\\\left|y-7\right|^{2009}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-33=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=7\end{matrix}\right.\)
Vậy \(x=11;y=7\)
TK MÌNH ĐI MOIH NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
vì (3x-33)^2008 >hoặc =0
|y-7|^2009> hoac =0
=>(3x-33)^2008=0 ; |y-7|^2009=0
=>3x-33=0=>x=33/3=11
y-7=0=>y=7
a) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)
<=> \(3x-7=x\left(3x-7\right)\)
<=> \(\left(3x-7\right)-x\left(3x-7\right)=0\)
<=> \(\left(3x-7\right)\left(1-x\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)
Vậy S = { 7/3; 1}
b) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
<=> \(\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
<=> \(\left(3x-1\right)\left(x^2-7x+12\right)=0\)
<=> \(\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)
<=> \(\left(3x-1\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\)
<=> \(\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
<=> x = 1/3 hoặc x = 3 hoặc x = 4.
Vậy S = { 1/3; 3; 4}
\(\Rightarrow\left(3x-7\right)^{2007}\left[\left(3x-7\right)^2-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}3x-7=0\\\left(3x-7\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\3x-7=1\\3x-7=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left(3x-7\right)\left(3x-8\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)