Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không hiểu ý bạn?
Tại sao (3x - 7)2009 = (3x - 7)2007.
Cùng cơ số mà khác mũ số sau bằng nhau được!
(3x-7)^2009=(3x-7)^2007
=> (3x-7)^2009-(3x-7)^2007=0
(=) (3x-7)^2007.[(3x-7)^2-1]=0
=>\(\left[{}\begin{matrix}\left(3x-7\right)^{2009}=0\\\left[\left(3x-7\right)^2-1\right]=0\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}3x-7=0\\\left(3x-7\right)^2=1\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}3x=7\\3x-7=1\\3x-7=-1\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}x=\dfrac{7}{3}\\3x=8\\3x=6\end{matrix}\right.\left(=\right)\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)
học tốt
Ta có: \(\left\{{}\begin{matrix}\left(3x-33\right)^{2008}\ge0\\\left|y-7\right|^{2009}\ge0\end{matrix}\right.\Rightarrow\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\ge0\)
Mà \(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-33\right)^{2008}=0\\\left|y-7\right|^{2009}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-33=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=7\end{matrix}\right.\)
Vậy \(x=11;y=7\)
TK MÌNH ĐI MOIH NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
vì (3x-33)^2008 >hoặc =0
|y-7|^2009> hoac =0
=>(3x-33)^2008=0 ; |y-7|^2009=0
=>3x-33=0=>x=33/3=11
y-7=0=>y=7
Vì giá trị tuyệt đối của từng cái đó luôn lớn hơn hoặc bằng không nên biểu thức đó bằng không khi:
\(\left|x+\frac{13}{7}\right|=0\Rightarrow x+\frac{13}{7}=0\Rightarrow x=\frac{-13}{7}\)
\(\left|y+\frac{2009}{2008}\right|=0\Rightarrow y+\frac{2009}{2008}=0\Rightarrow y=\frac{-2009}{2008}\)
\(\left|z+2007\right|=0\Rightarrow z+2007=0\Rightarrow z=-2007\)
Vậy ....
b)\(\left|21x-5\right|=\left|3x-7\right|\)
\(\Leftrightarrow\begin{cases}21x-5=3x-7\\21x-5=7-3x\end{cases}\)
\(\Leftrightarrow\begin{cases}9x=-1\\24x=12\end{cases}\)
\(\Leftrightarrow\begin{cases}x=-\frac{1}{9}\\x=\frac{1}{2}\end{cases}\)
a)\(\left|2x-7\right|=3\)
\(\Rightarrow2x-7=\pm3\)
Nếu \(2x-7=3\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=5\)
Nếu \(2x-7=-3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
1. 2008.\(\left(\dfrac{1}{2007}-\dfrac{2009}{1004}\right)-2009\left(\dfrac{1}{2007}-2\right)\)
=\(\left(2008.\dfrac{1}{2007}-2008.\dfrac{2009}{1004}\right)-\left(2009.\dfrac{1}{2007}-2009.2\right)\)
=\(\left(\dfrac{2008}{2007}-2.2009\right)-\left(\dfrac{2009}{2007}-2.2009\right)\)
=\(\left(\dfrac{2008}{2007}-4018\right)-\left(\dfrac{2009}{2007}-4018\right)\)
=\(\dfrac{2008}{2007}-4018-\dfrac{2009}{2007}+4018\)
=\(\left(\dfrac{2008}{2007}-\dfrac{2009}{2007}\right)+\left[\left(-4018\right)+4018\right]\)
=\(\dfrac{1}{2007}.\left(2008-2009\right)+0\)
=\(\dfrac{1}{2007}.\left(-1\right)+0\)
=\(\dfrac{-1}{2007}\)
2.\(\dfrac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3+4^5}\)
=\(\dfrac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left[\left(2^2.5\right)+5\right]^3+\left(2^2\right)^5}\)
=\(\dfrac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{2^6.5^3+5^3+2^{10}}\)
=\(\dfrac{5^9.2^6-5^7.2^6+5^7.2^{10}}{5^3.\left(2^6+1\right)+2^{10}}\)
=\(\dfrac{5^7.2^6\left(5^2-1-2^4\right)}{5^3\left(2^6+1\right)+2^{10}}\)
bí rồi
\(a)\) \(\left|\left|3x-3\right|2x+\left(-1\right)^{2016}\right|=3x+2017^0\)
\(\Leftrightarrow\)\(\left|\left|3x-3\right|2x+1\right|=3x+1\)
Mà \(\left|\left|3x-3\right|2x+1\right|\ge0\) nên \(3x+1\ge0\)\(\Rightarrow\)\(x\ge1\)
\(\Leftrightarrow\)\(\left|3x-3\right|2x+1=3x+1\)
\(\Leftrightarrow\)\(\left|3x-3\right|=\frac{3x}{2x}\)
\(\Leftrightarrow\)\(\left|3x-3\right|=\frac{3}{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-3=\frac{3}{2}\\3x-3=\frac{-3}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=\frac{9}{2}\\3x=\frac{3}{2}\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{9}{2}:3\\x=\frac{3}{2}:3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\left(tmx\ge1\right)\\x=\frac{1}{2}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{3}{2}\)
\(\Rightarrow\left(3x-7\right)^{2007}\left[\left(3x-7\right)^2-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}3x-7=0\\\left(3x-7\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\3x-7=1\\3x-7=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left(3x-7\right)\left(3x-8\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{8}{3}\\x=2\end{matrix}\right.\)