K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Đặt \(5x^2+3y^2+4xy-2x+8y+8=A\)

ta có \(5x^2+3y^2+4xy-2x+8y+8< 0\)

<=>\(\left(2x+y\right)^2+\left(x-1\right)^2+2\left(y+2\right)^2< 1\)

vì x,y là số nguyên nên A cũng nguyên 

mà A<1 nên A=0 (vì A là toonngr của 3 số chính phương)

=>\(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\)

bạn tự giải nha

11 tháng 4 2022

sai sai ở đâu đấy anh bạn, đây là phương trình chứ đâu có liên quan đến bất đẳng thức đâu.

29 tháng 8 2023

Đặt x = -2y + k (k \(\inℤ\))

Ta có x2 + 8y2 + 4xy - 2x - 4y = 4

<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4

<=> k2 + 4y2 - 2k = 4

<=> (k - 1)2 + (2y)2 = 5 (*) 

Dễ thấy (2y)2 \(⋮4\) (**)

Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được 

\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\) 

Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1) 

mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)  

10 tháng 1 2021

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

20 tháng 8 2021

từ trường hợp y=1 của bạn có thể giải thành 2 trường hợp của x

Thay y=1 vào \(\left(x+2y-1\right)^2=5-4y^2\)được

\(\left(x+2-1\right)^2=5-4\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\left(x-1\right)^2-1=0\Leftrightarrow x\left(x-2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

*Trường hợp y=-1

\(\left(x-2-1\right)^2=5-4\Leftrightarrow\left(x-3\right)^2=1\Leftrightarrow\left(x-3\right)^2-1=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

29 tháng 4 2017

Từ 2x2 + 3y2 =77.Suy ra \(0\le3y^2\le77\Rightarrow0\le y^2\le25\)kết hợp với 2x2 là số chẵn => 3y2 là số lẻ =>y2 là số lẻ => y \(\in\){1 ;9 ; 25} 

+Với y2 = 1 => 2x2 = 77 - 3 = 74 <=> x2 = 37 (không thỏa mãn)

+Với y2 = 9 => 2x2 = 77 - 27 = 50 <=> x2 = 25 <=> x = 5 hoặc x = -5 

+Với y2 = 25 => 2x2 = 77 - 75 = 2 <=> x2 = 1 <=> x = 1 hoặc x = -1 

Vậy ta có các trường hợp sau:

x1-11-15-55-5
y55-5-533-3-3
29 tháng 4 2017

ta có: \(2x^2+3y^2=44+33\)

=>\(2x^2+3y^2=2.22+3.11\)

=>\(x^2=22\Rightarrow\sqrt{22}\)

và \(y=11\Rightarrow\sqrt{11}\)

đúng 100%

đúng 100%

đúng 100%

24 tháng 2 2016

để mk lật sách xem bài đẳng thức thử chứ chưa hok

duyệt đi

24 tháng 2 2016

2.99076872 

mình làm trước nha