b1 Cho \(a\ge4\) tìm min \(A=a+\frac{1}{a}\)
B2 cho a>0 tìm min \(B=\frac{3x^4+16}{x^3}\)
B3 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
Bài 1:
Theo BĐT AM-GM có :$(x+y+1)(x^2+y^2)+\dfrac{4}{x+y}\geq (x+y+1).2xy+\dfrac{4}{x+y}=2(x+y+1)+\dfrac{4}{x+y}=(x+y)+(x+y)+\dfrac{4}{x+y}+2\geq 2\sqrt{xy}+2\sqrt{(x+y).\dfrac{4}{x+y}}+2=2+4+2=8$(đpcm)
Dấu \(=\) xảy ra khi \(x=y, xy=1\) và \(x+y=2\) hay \(x=y=1\)
Bài 1:
Áp dụng BĐT Cô-si cho các số dương:
\(x^2+y^2\geq 2xy=2\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 2(x+y+1)+\frac{4}{x+y}(1)\)
Tiếp tục áp dụng BĐT Cô-si:
\(2(x+y+1)+\frac{4}{x+y}=(x+y+2)+[(x+y)+\frac{4}{x+y}]\)
\(\geq (2\sqrt{xy}+2)+2\sqrt{(x+y).\frac{4}{x+y}}=(2+2)+4=8(2)\)
Từ \((1);(2)\Rightarrow (x+y+1)(x^2+y^2)+\frac{4}{x+y}\geq 8\) (đpcm)
Dấu "=" xảy ra khi $x=y=1$
Bài 1:
Áp dụng BĐT Bunhiacopxky:
\((a^2+b^2+c^2+d^2)(1+1+1+1)\geq (a+b+c+d)^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\geq \frac{(a+b+c+d)^2}{4}=\frac{2^2}{4}=1\) (đpcm)
Dấu "=" xay ra khi \(a=b=c=d=\frac{1}{2}\)
Bài 2:
Bạn xem lại đề:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(16a^4+1\geq 2\sqrt{16a^4.1}=8a^2\Rightarrow \frac{a^2}{1+16a^4}\leq \frac{a^2}{8a^2}=\frac{1}{8}(1)\)
\(b^4+1\geq 2\sqrt{b^4.1}=2b^2\Rightarrow \frac{b^2}{1+b^4}\leq \frac{b^2}{2b^2}=\frac{1}{2}(2)\)
Từ \((1);(2)\Rightarrow \frac{a^2}{1+16a^4}+\frac{b^2}{1+b^4}\leq \frac{1}{8}+\frac{1}{2}=\frac{5}{8}\) chứ không phải $\frac{1}{4}$
Nếu bạn muốn kết quả là $\frac{1}{4}$ thì cần thay $b^4$ bằng $16b^4$ và làm tương tự như trên.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2