chứng minh : 2/3.5 + 2/5.7 + 2/7.9 + ...+ 2/97.99 > 32% giúp mình với :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)\(=\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{99-97}{97\cdot99}\)\(=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}+\frac{7}{5\cdot7}-\frac{5}{5\cdot7}+...+\frac{99}{97\cdot99}-\frac{97}{97\cdot99}\)\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)\(=\frac{1}{3}-\frac{1}{99}\)\(=\frac{32}{99}>\frac{8}{25}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Nhận thấy : \(\frac{32}{99}>\frac{8}{25}\left(32>8;99>25\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2\cdot\dfrac{98}{303}=\dfrac{196}{303}\)
Giải:
Biến đổi vế trái BĐT:
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(=\dfrac{1}{3}-\dfrac{1}{99}\)
\(=\dfrac{32}{99}\)
Vì \(\dfrac{32}{99}>\dfrac{32}{100}\)
\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>\dfrac{32}{100}\)
\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>32\%\)
Vậy ...
M = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ..... + 1/97 - 1/99
M = 1/3 - 1/99
M = 32/99
= 2 . ( \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ ..... + \(\frac{1}{97}\)- \(\frac{1}{99}\)
= 2 . ( \(\frac{1}{3}\)- \(\frac{1}{99}\))
= 2 . \(\frac{2}{3}\)
= \(\frac{4}{3}\)
32% = \(\frac{32}{100}\)= \(\frac{8}{25}\)
\(\frac{4}{3}\)> \(\frac{8}{25}\)=> \(\frac{2}{3.5}\)+ \(\frac{2}{5.7}\)+ \(\frac{2}{7.9}\)+ ..... + \(\frac{2}{97.99}\)> 32%
\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}=\frac{800}{2475}\)
\(32\%=\frac{8}{25}=\frac{792}{2475}\)
\(\frac{800}{2475}>\frac{792}{2475}\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}>32\%\)
Đặt : \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
Do \(\frac{32}{99}>32\%\)nên \(A>32\%\left(đpcm\right)\)
Bài làm:
Ta có: Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=32\%\)
=> Biểu thức trên > 32%
=> đpcm
Dạ đề nghị bạn Vũ Ngọc Tuấn không spam linh tinh lên bài làm nữa nhé!