K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

A M B I N C O

a) Xét tam giác MOB và tam giác ION có:

MO = ON (gt)

BO = OI (gt)

góc MOB = góc ION (đối đỉnh)

=> tam giác MOB = tam giác ION (c.g.c)

=> góc MBO = góc OIN (cặp góc tương ứng)

Mà góc MBO = góc OIN (ở vị trí so le trong) => BM // NI

b) Vì tam giác MOB = tam giác ION (câu a)

=> MB = IN (cặp cạnh tương ứng)

Mà MB = NC (gt) 

=> IN = NC => Tam giác NIC cân 

c) xin lỗi bn nhé ! câu c mình nghĩ ko ra, bn nhờ bn khác giúp nha !

a: AM=6-2=6cm

AN=12-3=9cm

=>AM/AB=AN/AC

=>MN//BC

b: Xet ΔAKC có NI//KC

nên NI/KC=AI/AK

Xét ΔABK có MI//BK

nên MI/BK=AI/AK

=>NI/KC=MI/BK

c: NI/KC=MI/BK

KC=KB

=>NI=MI

=>I là tđ của MN

19 tháng 2 2016

mk vẽ hình cho bạn nhé

24 tháng 1 2017

A B C M N K 3 ĐIỂM B,K,C SAO THẲNG HÀNG CHO ĐƯỢC

29 tháng 1 2017

Này bạn oi trên tia đối của CA mà

3 tháng 8 2020

A C M N P I B D

Bài làm:

P/s: Bạn sửa đề thành: "Trên tia đối của tia BA lấy điểm P sao cho B là trung điểm MP" nhé.

Từ N kẻ đường thẳng song song với AP cắt BC tại D

Vì ND // AP // AB

\(\Rightarrow\widehat{NDC}=\widehat{ABC}\left(1\right)\)

Mà tam giác ABC cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\widehat{NCD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{NCD}=\widehat{NDC}\)

=> Tam giác NDC cân tại N

=> ND = NC (3)

Mà MB = BP ( B là trung điểm MP ) (4)

Kết hợp giả thiết BM = CN với (3) và (4) ta được: ND = BP (S)

Mà ND // BP \(\Rightarrow\hept{\begin{cases}\widehat{IDN}=\widehat{IBP}\left(so.le.trong\right)\\\widehat{IPB}=\widehat{IND}\left(so.le.trong\right)\end{cases}\left(A\right)}\)

Ta có: \(\Delta IDN=\Delta IBP\left(g.c.g\right)\) vì:

\(\hept{\begin{cases}\widehat{IDN}=\widehat{IBP}\left(theo.\left(A\right)\right)\\BP=DN\left(theo.\left(S\right)\right)\\\widehat{IPB}=\widehat{IND}\left(theo.\left(A\right)\right)\end{cases}}\)

\(\Rightarrow IN=IP\)

=> I là trung điểm NP

3 tháng 8 2020

Đoạn CM tam giác bằng nhau nó bị lỗi nên mk viết lại đoạn đấy:

\(\widehat{IDN}=\widehat{IBP}\left(theo\left(A\right)\right)\)

\(BP=DN\left(theo\left(S\right)\right)\)

\(\widehat{IPB}=\widehat{IND}\left(theo\left(A\right)\right)\)

16 tháng 6 2019

Xét tam giác BMK và tam giác CNK có:

BM=CN (gt)

Góc BKM = góc CKN (hai góc đối đỉnh)

MK=NK (K là trung điểm MN)

=> tam giác BMK=tam giác CNK (c.g.c)

=> BK=CK

=> K là trung điểm BC

=> B,K,C thẳng hàng.

XÉT TAM GIÁC 

15 tháng 8 2017