Cho tam giác ABC trên cạnh AB lấy điểm M , trên cạnh AC lấy điểm N sao cho BM = CN . Gọi O là trung điểm của MN . Trên tia đối của OB lấy điểm I sao cho O là trung điểm của BI . Chứng minh rằng :
a) BM//NI
b) tam giác NIC cân
c) góc BAC = 2 . góc NCI
Mai mình phải nộp rồi , các đại thần giúp với :<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác MOB và tam giác ION có:
MO = ON (gt)
BO = OI (gt)
góc MOB = góc ION (đối đỉnh)
=> tam giác MOB = tam giác ION (c.g.c)
=> góc MBO = góc OIN (cặp góc tương ứng)
Mà góc MBO = góc OIN (ở vị trí so le trong) => BM // NI
b) Vì tam giác MOB = tam giác ION (câu a)
=> MB = IN (cặp cạnh tương ứng)
Mà MB = NC (gt)
=> IN = NC => Tam giác NIC cân
c) xin lỗi bn nhé ! câu c mình nghĩ ko ra, bn nhờ bn khác giúp nha !
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
Bài làm:
P/s: Bạn sửa đề thành: "Trên tia đối của tia BA lấy điểm P sao cho B là trung điểm MP" nhé.
Từ N kẻ đường thẳng song song với AP cắt BC tại D
Vì ND // AP // AB
\(\Rightarrow\widehat{NDC}=\widehat{ABC}\left(1\right)\)
Mà tam giác ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\widehat{NCD}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{NCD}=\widehat{NDC}\)
=> Tam giác NDC cân tại N
=> ND = NC (3)
Mà MB = BP ( B là trung điểm MP ) (4)
Kết hợp giả thiết BM = CN với (3) và (4) ta được: ND = BP (S)
Mà ND // BP \(\Rightarrow\hept{\begin{cases}\widehat{IDN}=\widehat{IBP}\left(so.le.trong\right)\\\widehat{IPB}=\widehat{IND}\left(so.le.trong\right)\end{cases}\left(A\right)}\)
Ta có: \(\Delta IDN=\Delta IBP\left(g.c.g\right)\) vì:
\(\hept{\begin{cases}\widehat{IDN}=\widehat{IBP}\left(theo.\left(A\right)\right)\\BP=DN\left(theo.\left(S\right)\right)\\\widehat{IPB}=\widehat{IND}\left(theo.\left(A\right)\right)\end{cases}}\)
\(\Rightarrow IN=IP\)
=> I là trung điểm NP
Đoạn CM tam giác bằng nhau nó bị lỗi nên mk viết lại đoạn đấy:
+ \(\widehat{IDN}=\widehat{IBP}\left(theo\left(A\right)\right)\)
+ \(BP=DN\left(theo\left(S\right)\right)\)
+ \(\widehat{IPB}=\widehat{IND}\left(theo\left(A\right)\right)\)
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM = góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.