K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

Bài này hơi dài. Chúng ta thu hẹp lại xét x dương  vì x dương và âm có vai trò như nhau

Đặt: \(2020+x^2=t^2\) ( thu hẹp với t dương )

=> \(t^2-x^2=2020\)

Chú ý rằng: \(\left(a-b\right)\left(a+b\right)=a\left(a+b\right)-b\left(a+b\right)=a^2+ab-ba-b^2=a^2-b^2\)

khi đó ta có: 

\(\left(t-x\right)\left(t+x\right)=2020\)

=> \(t-x;t+x\inƯ\left(2020\right)=\left\{1;2020;2;1010;4;505;5;404;10;202;20;101\right\}\)

Chú ý: t - x và t + x cùng chẵn hoặc cùng lẻ

TH1: t - x = 2 và t + x = 1010 

tổng hiệu => t = 506; x= 504

TH2: t - x = 10 và t + x = 202

=> t = 106; x = 96

Các trường hợp còn lại loại

Kết luận: x = 504 ; x = -504; x = 96; x = -96

10 tháng 8 2020

thanh ciu

AH
Akai Haruma
Giáo viên
16 tháng 10 2021

Lời giải:

Đặt  $n^2-2n+2020=a^2$ với $a\in\mathbb{N}^*$

$\Leftrightarrow (n-1)^2+2019=a^2$

$\Leftrightarrow 2019=(a-n+1)(a+n-1)$

Với $a\in\mathbb{N}^*, n\in\mathbb{N}$ thì $a+n-1>0$

$\Rightarrow a-n+1>0$. Vậy $a+n-1> a-n+1>0$

Mà tích của chúng bằng $2019$ nên ta có các TH sau:

TH1: $a+n-1=2019; a-n+1=1$

$\Rightarrow n=1010$ (tm)

TH2: $a+n-1=673, a-n+1=3$

$\Rightarrow n=336$

 

 

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

Ta có: $\Delta=(m-3)^2+16>0$ với mọi $m$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m$.

Theo định lý Viet: 

$x_1+x_2=m-3$

$x_1x_2=-4$

Có:

$\sqrt{x_1^2+2020}-x_1=\sqrt{x_2^2+2020}+x_2$

$\Leftrightarrow \sqrt{x_1^2+2020}-\sqrt{x_2^2+2020}=x_1+x_2$

$\Leftrightarrow \frac{x_1^2-x_2^2}{\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}}=x_1+x_2$

$\Leftrightarrow (x_1+x_2)\left[\frac{x_1-x_2}{\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}}-1\right]=0$

$\Leftrightarrow x_1+x_2=0$ hoặc $x_1-x_2=\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}$

Với $x_1+x_2=0$

$\Leftrightarrow m-3=0\Leftrightarrow m=3$ (tm)

Với $x_1-x_2=\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020}$

$\Rightarrow (x_1-x_2)^2=(\sqrt{x_1^2+2020}+\sqrt{x_2^2+2020})^2$

$\Leftrightarrow -2x_1x_2=4040+2\sqrt{(x_1^2+2020)(x_2^2+2020)}$

$\Leftrightarrow 8=4040+2\sqrt{(x_1^2+2020)(x_2^2+2020)}$

$\Leftrightarrow \sqrt{(x_1^2+2020)(x_2^2+2020)}=-2016<0$ (vô lý - loại)

Vậy $m=3$

25 tháng 3 2022

-Đặt \(x^2+8x=a^2\)

\(\Rightarrow x^2+8x+16=a^2+16\)

\(\Rightarrow\left(x+4\right)^2-a^2=16\)

\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)

-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)

\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)

\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)

\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)

-Vậy \(x\in\left\{0;1\right\}\)

 

 

 

21 tháng 8 2021

a. \(x=\left\{4;9;16\right\}\)

b. \(x=1\)

c. \(x=\left\{-2;-1\right\}\)

21 tháng 8 2021

giải ra giúp mình với 

17 tháng 7 2021

a=230+22020+4n=415+41010+4n=415(1+4995+4n-15) mà 415 là số cp suy ra (1+4995+4n-15)là số cp

ta có: 1+4995+4n-15=22n-30+2.21989+1=(22n-30+1)2

đề 1+4995+4n-15=(2n-15)2+2.21989+1=(2n-15+1)2 là số cp thì n-15=1989 suy ra n=1974

nếu sai thì sorry bạn nha

1 tháng 5 2015

Gọi x - 2020 = m2

      x - 5 = n2

=> (x - 5) - (x - 2020) = n2 - m2 

=> 2015 = n2 - m2 = (n-m). (n+m)

Vì 2015 = 5 . 403 = (-5).(-403) = 1. 2015 = (-1).(-2015)

Trường hợp 1: n - m = 5; n + m = 403 => 2.n = 408 => n = 204 => m = 204 - 5 = 199  => x = 1992 - 2020 =37581 chia hết cho 3=> loại

Trường hợp 2: n - m = 403 ; n + m = 5 => 2n = 408 => n = 204 => m = 204 - 403 = -199 => x = 37581 => loại

các trường hợp còn lại tương tự........

9 tháng 2 2017

Bấm vào đúng là đáp án sẽ hiện lên!!!!

Thử đi