tìm nghiệm của đa thức H(x)=2x2-2x
làm giúp mình nhé chi tiết một chút!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho H(x)= 0
Ta có: 2\(x^2\)- 2x= 0
2x. (x-1) = 0
=> 2x= 0 hoặc x-1= 0
x= 0: 2 x= 0+1
x= 0 x= 1
Vậy x= 0 hoặc x=1
Cho g(x) = 0
x + 1 = 0
x = -1
Để f(x) chia hết cho g(x) thì x = -1 cũng là nghiệm của f(x)
Hay f(1) = 0
3.1² + 2.1² - 7.1 - m + 2 = 0
-2 - m + 2 = 0
m = 0
Vậy m = 0 thì f(x) chia hết cho g(x)
Giải chi tiết của em đây :
F(x) = 3x2 + 2x2 - 7x - m + 2
F(x) \(⋮\) x + 1 \(\Leftrightarrow\) F(x) \(⋮\) x - (-1)
Theo bezout ta có : F(x) \(⋮\) x - (-1) \(\Leftrightarrow\) F(-1) = 0
\(\Leftrightarrow\) 3(-1)2 + 2(-1)2 - 7.(-1) - m + 2 = 0
3 + 2 + 7 - m + 2 =0
14 - m = 0
m = 14
Kết luận với m = 14 thì F(x) chia hết cho x + 1
Đây là bài toán tổng hiệu,đã có tổng của cả P(x) và Q(x) nên\(P\left(x\right)=\frac{x^2+1+2x}{2}=\frac{\left(x^2+x\right)+\left(x+1\right)}{2}=\frac{\left(x+1\right)^2}{2}\)
\(Q\left(x\right)=P\left(x\right)-2x=\frac{\left(x+1\right)^2}{2}-2x=\frac{x^2+2x+1-4x}{2}=\frac{x^2-2x+1}{2}=\frac{\left(x-1\right)^2}{2}\)
Nếu bn hỏi x^2-2x+1 sao lại =(x-1)^2 thì ph giống như (x+1)^2 nhé.
===
thế này không hiểu potay.com
f(x)=(x-a).q(x)
f(0)=(0-a).q(0) "{chỗ nào có x thay bằng 0"}
0-a=-a
=>f(0)=-a.Q(0)
tượng f(1)
===
f(0) lẻ=>(-a).q(0) lẻ
nghĩa là (a lẻ và q(0) cũng phải lẻ)
" một số lẻ không thể là tích của một số chẵn được)
tương tự
f(1) lẻ==>(1-a) & q(1) cùng lẻ
====
a & (1-a) hai số nguyên liên tiếp =>không thể cùng lẻ
\(C\left(1\right)=2\cdot1^2-2=0\)
=>x=1 là nghiệm
\(C\left(-1\right)=2\cdot\left(-1\right)^2-2=0\)
=>x=-1 là nghiệm
`C(1) = 2 . 1^2 - 2 = 0 => 1` là nghiệm.
`C(-1) = 2. (-1)^2 - 2 = 0 => -1` là nghiệm
`=>` Đa thức có nghiệm là `+-1`.
x4+(1−2m)x2+m2−1(1)
Đặt t=x2(t\(\ge\) 0) ta được:
t2+(1-2m)t+m2-1(2)
a)Để PT vô nghiệm thì:
\(\Delta=\left(1-2m\right)^2-4.1.\left(m^2-1\right)<0\)
<=>1-4m+4m2-4m2+4<0
<=>5-4m<0
<=>m>5/4
H(x) = 2x2 - 2x
H(x) = 0 <=> 2x2 - 2x = 0
<=> x( 2x - 2 ) = 0
<=> x = 0 hoặc 2x - 2 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của H(x) là 0 và 1
\(H\left(x\right)=2x^2-2x=2x\left(x-1\right)\)
Để H(x) có nghiệm => 2x(x-1)=0
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x=0; x=1