K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CAD=góc NBC

=>1/2*sđ cung CD=1/2*sđ cung CE

=>CD=CE
c: góc BHM=góc BCN=1/2*sđ cung BA

góc BDH=1/2*sđ cung BA

=>góc BHD=góc BDH

=>ΔBHD cân tại B

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

a: Xét tứ giác HMCN co

góc HMC+góc HNC=180 đô

=>HMCN là tứ giác nội tiếp

b: góc CBE=1/2*sđ cung CE
góc CAD=1/2*sđ cung CD

mà góc CBE=góc CAD

nên CE=CD

c: góc BHD=góc ACB=1/2*sđ cung AB=góc BDH

=>ΔBHD cân tại B

24 tháng 3 2022

Ngu thế dễ mà cũng ko làm được

 

19 tháng 6 2021

a) Ta có: \(\angle AKB=\angle AIB=90\Rightarrow AKIB\) nội tiếp

b) Trong (O) có DE là dây cung không đi qua O và M là trung điểm DE

\(\Rightarrow OM\bot DE\)

CEAD nội tiếp \(\Rightarrow\angle CED=\angle CAD\)

CEBD nội tiếp \(\Rightarrow\angle CDE=\angle CBE\)

mà \(\angle CAD=\angle CBE\) (AKIB nội tiếp)

\(\Rightarrow\angle CED=\angle CDE\Rightarrow\Delta CDE\) cân tại C mà M là trung điểm DE

\(\Rightarrow CM\bot DE\Rightarrow C,O,M\) thẳng hàng

c) AKIB nội tiếp \(\Rightarrow\angle IKB=\angle IAB=\angle DAB=\angle DEB\)

\(\Rightarrow\) \(IK\parallel DE\)

 

undefined

19 tháng 6 2021

thank :)

a: Xét tứ giác AKIB có

góc AKB=góc AIB=90độ

=>AKIB là tứ giác nội tiếp

b: góc BHD=góc AHE=90 độ-góc HAC=90 độ-1/2*sđ cung CD

góc BDH=90 độ-góc IBD=90 độ-1/2*sđ cung CD

=>góc BHD=góc BDH

=>ΔBHD cân tại B

19 tháng 6 2021

a) Ta có: \(\angle AFH+\angle AEH=90+90=180\Rightarrow AEHF\) nội tiếp

Gọi D là trung điểm AH

Vì \(\Delta AEH\) vuông tại E có D là trung điểm AH \(\Rightarrow DE=DA=DH\)

Tương tự \(\Rightarrow DF=DA=DH\Rightarrow DE=DF=DA=DH\)

\(\Rightarrow D\) là tâm (AEHF)

Tương tự,ta chứng minh BCEF nội tiếp đường tròn có tâm là BC

b) Xét \(\Delta MFB\) và \(\Delta MCE:\) Ta có: \(\left\{{}\begin{matrix}\angle EMCchung\\\angle MFB=\angle MCE\end{matrix}\right.\)

\(\Rightarrow\Delta MFB\sim\Delta MCE\left(g-g\right)\Rightarrow\dfrac{MF}{MC}=\dfrac{MB}{ME}\Rightarrow ME.MF=MB.MC\)

Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle AMCchung\\\angle MNB=\angle MCA\end{matrix}\right.\)

\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)

\(\Rightarrow MN.MA=ME.MF\Rightarrow\dfrac{MN}{ME}=\dfrac{MF}{MA}\)

Xét \(\Delta MNF\) và \(\Delta MEA:\) Ta có: \(\left\{{}\begin{matrix}\angle AMEchung\\\dfrac{MN}{ME}=\dfrac{MF}{MA}\end{matrix}\right.\)

\(\Rightarrow\Delta MNF\sim\Delta MEA\left(c-g-c\right)\Rightarrow\angle MNF=\angle MEA\Rightarrow ANFE\) nội tiếp

c) ANFE nội tiếp mà AEHF nội tiếp \(\Rightarrow A,E,H,F,N\) cùng thuộc 1 đường tròn

\(\Rightarrow\angle ANH=\angle AFH=90\Rightarrow NH\bot AN\)

Vì AK là đường kính \(\Rightarrow\angle ANK=90\Rightarrow NK\bot AN\)

\(\Rightarrow N,H,K\) thẳng hàngundefined

19 tháng 6 2021

thank