GPT: \(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : -1 <= x <= 3
XH : \(\left(-x^2+4x+12\right)-\left(x^2+2x+3\right)=2x+9>0\)
=> VT > 0
VÌ -1 <=x <=3 => VT = \(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}.\sqrt{3-x}\)
Áp dụng BĐT \(\left(ab-cd\right)^2\le\left(a^2-c^2\right)\left(b^2-d^2\right)\) ta có :
\(VT^2=\left(\sqrt{x+2}\sqrt{6-x}-\sqrt{x+1}\sqrt{3-x}\right)^2\ge\left(x+2-x-1\right)\left(6-x-3+x\right)=1.3=3\)
=> VT \(\ge\sqrt{3}\) dấu bằng xảy ra khi \(\left(x+2\right)\left(6-x\right)=\left(x+1\right)\left(3-x\right)\) <=> x = 0
VP = \(\sqrt{3}-x^2\le\sqrt{3}\)
Dấu bằng xảy ra khi x = 0
Để VT bằng VP => x = 0
a) \(\sqrt{9-12x+4x^2}=4\Leftrightarrow\sqrt{\left(2x\right)^2-2.2x.3+9}=4\Leftrightarrow\sqrt{\left(2x-3\right)^2}=4\left(1\right)\)Nếu \(x< \dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow3-2x=4\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)(nhận)
Nếu \(x\ge\dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow2x-3=4\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\)(nhận)
Vậy S=\(\left\{\dfrac{-1}{2};\dfrac{7}{2}\right\}\)
b) \(\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}=1\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+1\right)^2}=1\left(1\right)\)Nếu x<-1
\(\left(1\right)\Leftrightarrow1-x+\left[-\left(x+1\right)\right]=1\Leftrightarrow1-x+\left(-x-1\right)=1\Leftrightarrow1-x-x-1=1\Leftrightarrow-2x=1\Leftrightarrow x=\dfrac{-1}{2}\)(loại)
Nếu -1≤x<1
\(\left(1\right)\Leftrightarrow1-x+x+1=1\Leftrightarrow2=1\)(loại)
Nếu x≥1
\(\left(1\right)\Leftrightarrow x-1+x+1=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)(loại)
Vậy S=∅
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐLXĐ:\(x\ge-1\)
\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\)
\(\Leftrightarrow\left[\sqrt{x^2+4x+12}-\left(6-3x\right)\right]-\left[\sqrt{x+1}-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\frac{x^2+4x+12-36+36x-9x^2}{\sqrt{x^2+4x+12}+2-3x}-\frac{x+1-x^2+4x-4}{\sqrt{x+1}+x+2}=0\)
\(\Leftrightarrow\frac{-8x^2+40x-24}{\sqrt{x^2+4x+12}+2-3x}-\frac{-x^2+5x-3}{\sqrt{x+1}+x-2}=0\)
\(\Leftrightarrow\frac{8\left(-x^2+5x-3\right)}{\sqrt{x^2+4x+12}+2-3x}-\frac{-x^2+5x-3}{\sqrt{x+1}+x-2}=0\)
\(\Leftrightarrow\left(-x^2+5x-3\right)\left[\frac{8}{\sqrt{x^2+4x+12}+2-3x}-\frac{1}{\sqrt{x+1}+x-2}\right]=0\)
TH1:\(-x^2+5x-3=0\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
TH2:........ ( chắc vô nghiệm )
phần mẫu phải là \(\sqrt{x^2+4x+12}+6-3x\) chứ :vv Hơi lỗi nhưng cảm ơn nhé !!