Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H
a) Chứng minh rằng tứ giác BFEC nội tiếp
b) đường thẳng EF cắt đường tròn (O) tại M (M thuộc cung nhỏ AB). Chứng minh rằng tam giác AFM ~tam giác AMB và AM^2=AH.AD
c) cho biết AD = 1,5R. Tính diện tích AB.AC theo R
d) Giả sử BC cố định, điểm A chuyển động trên cung lớn BC. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác DEF thuộc một đường tròn cố định