Cho tam giác ABC có hai đường trung tuyến AD,BE cắt nhau tại G trên tia đối của tia DG lấy điểm M sao cho cho D là trung điểm của đoạn thẳng MG Trên tia đối của tia EG lấy điểm N sao cho E là trung điểm của GN chứng minh
a) GN=GB,GM=GA
b) MN=AB và MN//AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a, Vì AD là trung tuyến \(\Rightarrow AG=\frac{2}{3}AD\)\(\Rightarrow GD=\frac{1}{3}AD\)\(\Rightarrow GM=\frac{2}{3}AD\)(D là trung điểm MG)
\(\Rightarrow AG=GM\)
Vì BE là trung tuyến \(\Rightarrow BG=\frac{2}{3}BE\)\(\Rightarrow GE=\frac{1}{3}BE\)\(\Rightarrow GN=\frac{2}{3}BE\)(E là trung điểm GN)
\(\Rightarrow BG=GN\)
b, Xét △ANG và △MBG
Có: AG = MG (cmt)
AGN = MGB (2 góc đối đỉnh)
NG = BG (cmt)
=> △ANG = △MBG (c.g.c)
=> AN = MB (2 cạnh tương ứng)
và ANG = MBG (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AN // MB (dhnb)
Câu 2: sai đề???
a) Xét ΔGDB và ΔMDC có
DG=DM(gt)
\(\widehat{GDB}=\widehat{MDC}\)(hai góc đối đỉnh)
DB=DC(D là trung điểm của BC)
Do đó: ΔGDB=ΔMDC(c-g-c)
Suy ra: \(\widehat{DGB}=\widehat{DMC}\)(hai góc tương ứng)
mà \(\widehat{DGB}\) và \(\widehat{DMC}\) là hai góc ở vị trí so le trong
nên BG//MC(Dấu hiệu nhận biết hai đường thẳng song song)
hay CM//BE(Đpcm)
a: Xét tứ giác BGCN có
D là trung điểm của đường chéo BC
D là trung điểm của đường chéo GN
Do đó: BGCN là hình bình hành
a: Xét ΔABC có
AI,BE,CF vừa là trung tuyến vừa đồng quy tại G
=>G là trọng tâm của ΔABC
=>BG=2GE; CG=2GFl AG=2GI
=>BG=GN; CG=GP; AG=GM
Gọi O là giao của PM và BG
Xét tứ giác ABMN có
G là trung điểm chung của AM và BN
=>ABMN là hình bình hành
=>AN=BM
Xét tứ giác APMC có
G là trung điểm của AM và PC
=>APMC là hình bình hành
=>AP=MC
Xét tứ giác BPNC có
G là trung điểm chung của BN và PC
=>BPNC là hình bình hành
=>BP=NC và NP=BC
Xet ΔMNP và ΔABC có
MN=AB
NP=BC
MP=AC
=>ΔMNP=ΔABC
b: Xét tứ giác BPGM có
GP//BM
GP=BM
=>BPGM là hình bình hành
=>O là trung điểm của BG và PM
=>BO=OG=GE=EN
=>NG=2/3NO
Xét ΔMNP có
NO là trung tuyến
NG=2/3NO
=>G là trọng tâm của ΔMNP
tự kẻ hình nghen:33333
a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC
=> EG=1/3BE, BG=2/3BE
=> GD=1/3AD, AG=2/3AD
=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE
=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD
b) xét tam giác AGB và tam giác MGN có
GN=BG(cmt)
GM=AG(cmt)
AGB=MGN( đối đỉnh)
tam giác AGB=tam giác MGN (cgc)
MN=AB( hai cạnh tương ứng)
=> BAG=GMN( hai góc tương ứng)
mà BAG so le trong với GMN=> AB//MN