Cho tam giác ABC có 2 đường trung tuyến BD , CE cắt nhau tại G . Trên tia đối của tia DB lấy M sao cho DM = DG . Trên tia đối của tia EG lấy N sao cho EN = EC
a ) BG =BM , CG=GN
b ) MN= BC , MN // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có .
Ta lại có là giao điểm của và là trọng tâm của tam giác
.
Suy ra .
Chứng minh tương tự ta được .
b) Xét tam giác và tam giác có (chứng minh trên);
(hai góc đối đỉnh);
(chứng minh trên).
Do đó (c.g.c)
(hai cạnh tương ứng).
Theo chứng minh trên (hai góc tương ứng).
Mà và ờ vị trí so le trong nên // .
a) Ta có .
Ta lại có là giao điểm của và là trọng tâm của tam giác
.
Suy ra .
Chứng minh tương tự ta được .
b) Xét tam giác và tam giác có (chứng minh trên);
(hai góc đối đỉnh);
(chứng minh trên).
Do đó (c.g.c)
(hai cạnh tương ứng).
Theo chứng minh trên (hai góc tương ứng).
Mà và ờ vị trí so le trong nên // .
tự kẻ hình nghen:33333
a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC
=> EG=1/3BE, BG=2/3BE
=> GD=1/3AD, AG=2/3AD
=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE
=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD
b) xét tam giác AGB và tam giác MGN có
GN=BG(cmt)
GM=AG(cmt)
AGB=MGN( đối đỉnh)
tam giác AGB=tam giác MGN (cgc)
MN=AB( hai cạnh tương ứng)
=> BAG=GMN( hai góc tương ứng)
mà BAG so le trong với GMN=> AB//MN
a) Xét ΔGDB và ΔMDC có
DG=DM(gt)
\(\widehat{GDB}=\widehat{MDC}\)(hai góc đối đỉnh)
DB=DC(D là trung điểm của BC)
Do đó: ΔGDB=ΔMDC(c-g-c)
Suy ra: \(\widehat{DGB}=\widehat{DMC}\)(hai góc tương ứng)
mà \(\widehat{DGB}\) và \(\widehat{DMC}\) là hai góc ở vị trí so le trong
nên BG//MC(Dấu hiệu nhận biết hai đường thẳng song song)
hay CM//BE(Đpcm)
Câu 1:
a, Vì AD là trung tuyến \(\Rightarrow AG=\frac{2}{3}AD\)\(\Rightarrow GD=\frac{1}{3}AD\)\(\Rightarrow GM=\frac{2}{3}AD\)(D là trung điểm MG)
\(\Rightarrow AG=GM\)
Vì BE là trung tuyến \(\Rightarrow BG=\frac{2}{3}BE\)\(\Rightarrow GE=\frac{1}{3}BE\)\(\Rightarrow GN=\frac{2}{3}BE\)(E là trung điểm GN)
\(\Rightarrow BG=GN\)
b, Xét △ANG và △MBG
Có: AG = MG (cmt)
AGN = MGB (2 góc đối đỉnh)
NG = BG (cmt)
=> △ANG = △MBG (c.g.c)
=> AN = MB (2 cạnh tương ứng)
và ANG = MBG (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AN // MB (dhnb)
Câu 2: sai đề???
a)Xét tam giác DBC và tam giác DMA có :
DA = DC (gt)
góc ADM = góc BDC (dối đỉnh)
BD =DM (gt)
=>tg DBC= tg DMA(c.g.c)
=> MA= BC( 2 cạnh tương ứng) (1)
Xét tg ENA và tg ECB có:
EA = EB (gt)
góc NEA = góc CEB(đối đỉnh)
EN= EC (gt)
=> tg ENA= tg ECB (c.g.c)
=> NA= BC (2 cạnh tương ứng) (2)
và A là trung nằm giữa M và N
Từ (1) và (2)=> MA= NA
=> A là trung điểm của đoạn MN.