\(\left(1+\tan1\right)\left(1+\tan2\right).......\left(1+tan45\right)=2^{23}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=lg\left(\tan1^0\right)+lg\left(\tan2^0\right)+....+lg\left(\tan88^0\right)+lg\left(\tan89^0\right)\)
\(=\left[lg\left(\tan1^0\right)+lg\left(\tan89^0\right)\right]+\left[lg\left(\tan2^0\right)+lg\left(\tan88^0\right)\right]+...+\left[lg\left(\tan44^0\right)+lg\left(\tan46^0\right)\right]+lg\left(\tan45^0\right)\)
\(=lg\left(\tan1^0.\tan89^0\right)+lg\left(\tan2^0.\tan88^0\right)+...+lg\left(\tan44^0.\tan46^0\right)+lg\left(\tan45^0\right)\)
\(=lg\left(\tan1^0.\cot1^0\right)+lg\left(\tan2^0.\cot2^0\right)+.....+lg\left(\tan44^0.\cot44^0\right)+lg\left(\tan45^0\right)\)
\(=lg1+lg1+....+lg1+lg1=0+0+....+0+0=0\)
a)Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:
\(\sin1=\cos89....\sin89=\cos1\)
Vậy \(A=0\)
b) Theo định lí tỉ số lượng giác của 2 góc phụ nhau, ta có:
\(\tan1=\cot89...\tan2=\cot88...\)
\(\Rightarrow B=\tan45\cdot\tan46\cdot\cot46\cdot...\cdot\tan89\cdot\cot89\)
Mà \(\tan\lambda\cdot\cot\lambda=1\)
\(\Rightarrow B=\tan45\cdot1=1\)
c) Bạn làm tương tự dựa vào CT \(\sin^2\lambda+\cos^2\lambda=1\)
a) \(tan3\alpha-tan2\alpha-tan\alpha=\left(tan3\alpha-tan\alpha\right)-tan2\alpha\)
\(=\left(\dfrac{sin3\alpha}{cos3\alpha}-\dfrac{sin\alpha}{cos\alpha}\right)-\dfrac{sin2\alpha}{cos2\alpha}\)\(=\dfrac{sin3\alpha cos\alpha-cos3\alpha sin\alpha}{cos3\alpha cos\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\)
\(=\dfrac{sin2\alpha}{cos3\alpha cos\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\)
\(=sin2\alpha.\left(\dfrac{1}{cos3\alpha cos\alpha}-\dfrac{1}{cos2\alpha}\right)\)
\(=sin2\alpha.\dfrac{cos2\alpha-cos3\alpha cos\alpha}{cos3\alpha cos\alpha cos2\alpha}\)
\(=sin2\alpha.\dfrac{cos2\alpha-\dfrac{1}{2}\left(cos4\alpha+cos2\alpha\right)}{cos3\alpha cos2\alpha cos\alpha}\)
\(=sin2\alpha.\dfrac{cos2\alpha-cos4\alpha}{2cos3\alpha cos2\alpha cos\alpha}\)
\(=\dfrac{sin2\alpha.2sin3\alpha.sin\alpha}{2cos3\alpha cos2\alpha cos\alpha}\)
\(=tan3\alpha tan2\alpha tan\alpha\) (Đpcm).
b) \(\dfrac{4tan\alpha\left(1-tan^2\alpha\right)}{\left(1+tan^2\right)^2}=4tan\alpha\left(1-tan^2\alpha\right):\left(\dfrac{1}{cos^2\alpha}\right)^2\)
\(=4tan\alpha\left(1-tan^2\alpha\right)cos^4\alpha\)
\(=4\dfrac{sin\alpha}{cos\alpha}\left(1-\dfrac{sin^2\alpha}{cos^2\alpha}\right)cos^4\alpha\)
\(=4sin\alpha\left(cos^2\alpha-sin^2\alpha\right)cos\alpha\)
\(=4sin\alpha cos\alpha.cos2\alpha\)
\(=2.sin2\alpha.cos2\alpha=sin4\alpha\) (Đpcm).
Ta có :
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)
\(=\)\(\frac{1}{100}\)
`#3107.101107`
`-3^2 + {-54 \div [-2^8 + 7] * (-2)^2}`
`= -9 + [-54 \div (-256 + 7) * 4]`
`= -9 + [-54 \div (-249) * 4]`
`= -9 + (18/83 * 4)`
`= -9 + 72/83`
`= -675/83`
______
`31 * (-18) + 31 * (-81) - 31`
`= 31 * (-18 - 81 - 1)`
`= 31 * (-100)`
`= -3100`
___
`(-12) * 47 + (-12) * 52 + (-12)`
`= (-12) * (47 + 52 + 1)`
`= (-12) * 100`
`= -1200`
___
`13 * (23 + 22) - 3 * (17 + 28)`
`= 13 * 45 - 3 * 45`
`= 45 * (13 - 3)`
`= 45 * 10`
`= 450`
____
`-48 + 48 * (-78) + 48 * (-21)`
`= 48 * (-1 - 78 - 21)`
`= 48 * (-100)`
`= -4800`
chứng minh nha