2x^2-(1-2√2)x-√2=0 giai bang cong thuc nghiem
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-ax^2-2x+2a=0\Leftrightarrow x^2\left(x-a\right)-2\left(x-a\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x-a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=a\end{matrix}\right.\)
Để pt có 3 nghiệm pb \(\Leftrightarrow a\ne\pm\sqrt{2}\)
TH1: \(a=\frac{\sqrt{2}-\sqrt{2}}{2}\Rightarrow a=0\)
TH2: \(\sqrt{2}=\frac{a-\sqrt{2}}{2}\Rightarrow a=3\sqrt{2}\)
TH3: \(-\sqrt{2}=\frac{a+\sqrt{2}}{2}\Rightarrow a=-3\sqrt{2}\)
Vậy \(a=\left\{0;\pm3\sqrt{2}\right\}\)
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
Lời giải:
Áp dụng định lý Viet:
$x_1+x_2=\frac{-4}{2}=-2$
$x_1x_2=\frac{-1}{2}$
Khi đó:
$A=x_1x_2^3+x_1^3x_2=x_1x_2(x_1^2+x_2^2)$
$=x_1x_2[(x_1+x_2)^2-2x_1x_2]$
$=\frac{-1}{2}[(-2)^2-2.\frac{-1}{2}]=\frac{-5}{2}$
\(x^4-x^2+2x+2=y^2\)
Ta có:
\(\left(x^2-1\right)^2\le x^4-x^2+2x+2< \left(x^2+2\right)^2\)
\(\Rightarrow x^4-x^2+2x+2=\left(\left(x^2-1\right)^2;x^4;\left(x^2-1\right)^2\right)\)
Tới đây tự làm nốt nhé