K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2020

Tam giác ABC cân tại A  nên góc B= góc C

theo bài ta co: BK.CH=BI^2=BI.CI => BI/BK = CH/ CI (BI=CI)

xét tam giác KBI và ICH có: góc B= góc C; BI/BK = CH/ CI

suy ra 2 tam giấc đồng dạng theo TH c.g.c.

b. từ a suy ra IK/IH = BK/CI = BK/BI (CI=BI)

và góc BKI= góc CIH.

ta có: KIB+B+BKI = 180

KIB+KIH+CIH = 180

suy ra góc B = góc KIH.

xét tam giác KIH và tam giAC KBI có:

góc B = góc I

IK/IH = BK/BI ( chứng minh trên )

suy ra 2 tam giác đồng dạng theo TH c.g.c

c. theo b suy ra góc IKH = góc BKI suy ra KI là phân giác góc BKH

d. theo c ta có IK/IH= BK/BI => IH. KB = IK. BI

tam giác KBI đồng dạng ICH => IK/IH = BI/CH => HC.IK = IH.BI

suy ra VT = IK.BI + IH. BI = BI.(IK+IH) > BI.HK ( theo bất đẳng thức tam giác: Tổng 2 cạnh trong tam giác lớn hơn cạnh còn lại)

a: Xét ΔAKB và ΔAHC có

AK=AH

góc BAK chung

AB=AC

=>ΔAKB=ΔAHC

=>CH=BK

b: Xét ΔOHB và ΔOKC có

góc OHB=góc OKC

HB=KC

góc OBH=góc OCK

=>ΔOHB=ΔOKC

c: ΔOHB=ΔOKC

=>OB=OC

=>AO là trung trực của BC

=>AO vuông góc BC tại I

=>AB>AI

21 tháng 12 2020

a) Xét ΔAMB và ΔAMC có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔAMB=ΔAMC(c-c-c)

b) Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

c) Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay \(\widehat{HAM}=\widehat{KAM}\)

Xét ΔAHM và ΔAKM có

AH=AK(gt)

\(\widehat{HAM}=\widehat{KAM}\)(cmt)

AM chung

Do đó: ΔAHM=ΔAKM(c-g-c)

\(\widehat{HMA}=\widehat{KMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MH và MK

nên MA là tia phân giác của \(\widehat{HAK}\)(đpcm)

d) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

\(\widehat{B}=\widehat{C}\)

Ta có: AH+HB=AB(H nằm giữa A và B)

AK+KC=AC(K nằm giữa A và C)

mà AB=AC(gt)

và AH=AK(gt)

nên HB=KC

Xét ΔHBM và ΔKCM có 

HB=KC(cmt)

\(\widehat{B}=\widehat{C}\)(cmt)

BM=MC(M là trung điểm của BC)

Do đó: ΔHBM=ΔKCM(c-g-c)

a: Xét ΔABN vuông tại A và ΔACM vuông tại A có

AB=AC

góc ABN=góc ACM

=>ΔABN=ΔACM

b: ΔABN vuông tại A có AE là trung tuyến

nên AE=BE=NE=BN/2

ΔACM vuông tại A có AD là trung tuyến

nên AD=CM/2=BN/2=AE

góc EAB=góc EBA=15 độ

góc DAC=góc DCA=15 độ

=>góc EAD=90-15-15=60 độ

Xét ΔAED có AE=AD  và góc EAD=60 độ

nên ΔAED đều

c: Xét ΔIBC có góc IBC=góc ICB

nên ΔIBC cân tại I

=>IB=IC

=>I nằm trên trung trực của BC

=>A,I,H thẳng hàng

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O là...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0