Cho tam giác cân ABC (AB = AC), I là trung điểm của BC. Trên các cạnh AB, AC lấy lần lượt các điểm K, H sao cho BK. CH= BI ^2. Chứng minh: .
a) Tam giác KBI ~ tam giác ICH
b) Tam giác KIH ~tam giác KBI
c) KI là phân giác của góc BKH
d) IH .KB+ HC .IK >HK .BI
Tam giác ABC cân tại A nên góc B= góc C
theo bài ta co: BK.CH=BI^2=BI.CI => BI/BK = CH/ CI (BI=CI)
xét tam giác KBI và ICH có: góc B= góc C; BI/BK = CH/ CI
suy ra 2 tam giấc đồng dạng theo TH c.g.c.
b. từ a suy ra IK/IH = BK/CI = BK/BI (CI=BI)
và góc BKI= góc CIH.
ta có: KIB+B+BKI = 180
KIB+KIH+CIH = 180
suy ra góc B = góc KIH.
xét tam giác KIH và tam giAC KBI có:
góc B = góc I
IK/IH = BK/BI ( chứng minh trên )
suy ra 2 tam giác đồng dạng theo TH c.g.c
c. theo b suy ra góc IKH = góc BKI suy ra KI là phân giác góc BKH
d. theo c ta có IK/IH= BK/BI => IH. KB = IK. BI
tam giác KBI đồng dạng ICH => IK/IH = BI/CH => HC.IK = IH.BI
suy ra VT = IK.BI + IH. BI = BI.(IK+IH) > BI.HK ( theo bất đẳng thức tam giác: Tổng 2 cạnh trong tam giác lớn hơn cạnh còn lại)