trong các số sau đây, số nào không phải số hữu tỉ:
1,25
10
\(\frac{5}{x}\)với x thuộc Z
\(\frac{-10}{3}\)
giúp mình lẹ nha đang cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các số , số hữu tỉ dương là : \(\frac{2}{3},\frac{-3}{-5}\)
Trong các số , số hữu tỉ âm là : \(\frac{-3}{7},\frac{1}{-5},-4\)
Trong các số , số hữu tỉ không phải dương và dương là : \(\frac{0}{-2}\)
Hữu tỉ dương: 2/3; -3/-5
Hữu tỉ âm: -3/7; 1/-5; -4
KO phải cả d lẫn âm:0/-2
chúc bạn học tốt nha
Ta có :*x(x+y+z) = - 5 (1)
* y(x+y+z) = 9 (2)
* z(x+y+z)=5 (3)
Từ (1) ; (2) và (3) , ta có :
x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5
Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :
(x+y+z) . (x+y+z) = 9
\(\Rightarrow\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3
\(-\) TRƯỜNG HỢP : x+y+z =3 :
* từ (1) có : x(x+y+z=3 ) = -5 và x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)
* từ (2) có : y(x+y+z) =9 và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)
* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)
\(-\) TRƯỜNG HỢP x +y+z=-3 :
* từ (1) có x(x+y+z=3 ) = -5 và x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)
* từ (2) có : y(x+y+z) =9 và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)
* từ (3) có : z(x+y+z) =5 và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)
Đảm bảo đúng 100% . K MIK NHA MN!
Đặt
\(x.\left(x+y+z\right)=-5\) (1)
\(y.\left(x+y+z\right)=9\) (2)
\(x.\left(x+y+z\right)=5\) (3)
Cộng (1);(2);(3) với nhau ta được
\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)
\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)
Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)
Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)
Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)
Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)
Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)
Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)
Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)
Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)
Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)
Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)
Ta có \(\frac{a+11}{a}=1+\frac{11}{a}\)
Để x \(\inℤ\Leftrightarrow\frac{11}{a}\inℤ\Leftrightarrow11⋮a\Leftrightarrow a\inƯ\left(11\right)\)
=> \(a\in\left\{1;-11;-1;11\right\}\)
Vây \(a\in\left\{1;-11;-1;11\right\}\) thì x nguyên
Để \(\frac{a+11}{a}\)là một số nguyên
Vậy \(\Rightarrow\)\((a+11)⋮a\)
Mà a\(⋮\)a
\(\Rightarrow\)11 \(⋮\)a
Để 11 chia hết cho a thì a phải là ước của 11 \(\Leftrightarrow\)Ư (11) = 1, 11 , -11 , -1
\(\Rightarrow a=1,11,-11,-1\)
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
a.
Ta có:\(\frac{-45}{47}>-1\) và \(\frac{51}{-50}< -1\)\(\Rightarrow\)\(\frac{-45}{47}>\frac{51}{-50}\Rightarrow x>y\)
b.
x>y mà
a) Các số hữu tỉ dương là: \(\frac{5}{{12}};\,2\frac{2}{3}.\)
Các số hữu tỉ âm là: \( - \frac{4}{5}; - 2;\, - 0,32.\)
Số không là số hữu tỉ dương cũng không là số hữu tỉ âm là: \(\frac{0}{{234}}\).
b) Ta có: \( - \frac{4}{5} = -0,8\)
Vì 0 < 0,32 < 0,8 < 2 nên 0 > -0,32 > -0,8 > -2 hay \(-2 < - \frac{4}{5} < -0,32 < 0\)
Mà \(0 < \frac{5}{12} <1; 1<2\frac{2}{3}\) nên \(0 < \frac{5}{12} < 2\frac{2}{3}\)
Các số theo thứ tự từ nhỏ đến lớn là:
\(-2 ; - \frac{4}{5} ; -0,32; \frac{0}{{234}}; \frac{5}{12} ; 2\frac{2}{3}\)
Chú ý: \(\frac{0}{a} = 0\,,\,a \ne 0.\)
a: Để x là số dương thì 2a-5<0
hay \(a< \dfrac{5}{2}\)
b: Để x là số âm thì 2a-5>0
hay \(a>\dfrac{5}{2}\)
c: Để x=0 thì 2a-5=0
hay \(a=\dfrac{5}{2}\)