Tính sin anpha nếu cos anpha =-2/3 và anpha <pi/2 <pi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) sin anpha = 2/3 => góc anpha = 42o
cos 42o = 0,743
tan 42o = 0,9
cot 42o = 1/tan 42o = 1/0,9 = 1,111
b) tan anpha + cot anpha = 3
<=> tan anpha + 1/tan anpha = 3
<=> tan2 anpha = 2
<=> tan anpha = \(\sqrt{2}\)
=> góc anpha = 55o
Ta có: a = sin 55o . cos 55o
<=> a = 0,469
-_- cái này là lượng giác mà khó quá, sin alpha thì dùng công thức sin^2 alpha+cos^2 alpha=1
mấy cái kia quên r
\(\sin\alpha=\frac{2}{5}\)
\(\Rightarrow\cos\alpha=\sqrt{1-\sin^2\alpha}\)
\(=\sqrt{1-\frac{4}{25}}\)
\(=\sqrt{\frac{21}{25}}=\)\(\frac{\sqrt{21}}{5}\)
\(\Rightarrow\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{2}{5}:\frac{\sqrt{21}}{5}=\frac{2}{\sqrt{21}}\)và \(\cot\alpha=\frac{\sqrt{21}}{2}\)
2. Tương tự a)
\(\cos B=\sqrt{1-\sin^2B}\)
\(=\sqrt{1-\frac{1}{4}}\)
\(=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}\)
\(\tan B,\cot B\)bạn tự tính nốt.
\(sin\alpha=0,4\Rightarrow sin^2\alpha=0,16\Rightarrow cos^2\alpha=1-sin^2\alpha=1-0,16=0,84\Rightarrow cos\alpha=\frac{\sqrt{21}}{5}\)
\(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{0,4}{\frac{\sqrt{21}}{5}}=\frac{2\sqrt{21}}{21}\)
\(cot\alpha=1:sin\alpha=1:\frac{2\sqrt{21}}{21}=\frac{21}{2\sqrt{21}}\)
\(tana\cdot cota=1\)
\(tana\cdot\frac{2}{3}=1\)
\(tana=\frac{3}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+\left(\frac{3}{2}\right)^2=\frac{1}{cos^2a}\)
\(1+\frac{9}{4}=\frac{1}{cos^2a}\)
\(\frac{13}{4}=\frac{1}{cos^2a}\)
\(cos^2a=\frac{4}{13}\)
\(cosa=\frac{2\sqrt{13}}{13}\) ( cấp 2 nên chỉ lấy cos dương )
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{4}{13}=1\)
\(sin^2a=\frac{9}{13}\)
\(sin^2a+cos^3a-tana\)
\(=\frac{9}{13}+\frac{4\sqrt{13}}{13}-\frac{3}{2}\)
\(=\frac{18}{26}+\frac{8\sqrt{13}}{26}-\frac{39}{26}\)
\(=\frac{-21+8\sqrt{13}}{26}\)
\(\frac{\pi}{2}< a< \pi\Rightarrow sina>0\)
\(\Rightarrow sina=\sqrt{1-cos^2a}=\sqrt{1-\left(-\frac{2}{3}\right)^2}=\frac{\sqrt{5}}{3}\)