K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2020

a) Xét \(\Delta'=\left(m-1\right)^2-\left(m^2-3\right)=-2m+4\)

phương trình có hai nghiệm <=> \(\Delta'\ge0\Leftrightarrow-2m+4\ge0\Leftrightarrow m\le2\)(@@) 

b) Gọi \(x_1;x_2\) là hai nghiệm của phương trình 

áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1x_2=m^2-3\\x_1+x_2=2\left(m-1\right)\end{cases}}\)

Không mất tính tổng quát: g/s: \(x_1=3x_2\)

=> \(4x_2=2\left(m-1\right)\Leftrightarrow x_2=\frac{m-1}{2}\)

=> \(x_1=\frac{3\left(m-1\right)}{2}\)

mà \(x_1x_2=m^2-3\)

=> \(\frac{3}{4}\left(m-1\right)^2=m^2-3\)

<=> \(3\left(m^2-2m+1\right)=4m^2-12\)

<=> \(\orbr{\begin{cases}m=-3+2\sqrt{6}\\m=-3-2\sqrt{6}\end{cases}}\) thỏa mãn 

Vậy ....

29 tháng 3 2022

giải theo công thức là ra

   

Trường hợp 1: m=10

Phương trình sẽ là -40x+6=0

hay x=3/20

=>m=10 sẽ thỏa mãn trường hợp a

Trường hợp 2: m<>10

\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)

\(=16m^2-4\left(m^2-14m+40\right)\)

\(=16m^2-4m^2+56m-160\)

\(=12m^2+56m-160\)

\(=4\left(3m^2+14m-40\right)\)

\(=4\left(3m^2-6m+20m-40\right)\)

\(=4\left(m-2\right)\left(3m+20\right)\)

a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0

=>m>=2 hoặc m<=-20/3

b: Để phương trình có hai nghiệm phân biệt đều dương thì 

\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)

NV
18 tháng 3 2021

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

a. \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=2\left(m+1\right)\\x_1=3x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{2}\\x_1=\dfrac{3\left(m+1\right)}{2}\end{matrix}\right.\)

Lại có \(x_1x_2=2m+10\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3\left(m+1\right)}{2}\right)=2m+10\)

\(\Leftrightarrow3m^2+6m+3=8m+40\)

\(\Leftrightarrow3m^2-2m-37=0\Rightarrow m=\dfrac{1\pm4\sqrt{7}}{3}\)

b.

\(P=-\left(x_1+x_2\right)^2-8x_1x_2\)

\(=-4\left(m+1\right)^2-8\left(2m+10\right)\)

\(=-4m^2-24m-84=-4\left(m+3\right)^2-48\le-48\)

\(P_{max}=-48\) khi \(m=-3\)

a) Ta có: \(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+10\right)\)

\(=\left(2m+2\right)^2-4\left(2m+10\right)\)

\(=4m^2+8m+4-8m-40\)

\(=4m^2-36\)

Để phương trình có nghiệm thì \(4m^2-36\ge0\)

\(\Leftrightarrow4m^2\ge36\)

\(\Leftrightarrow m^2\ge9\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi \(m\ge3\) hoặc \(m\le-3\) thì Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1\cdot x_2=2m+10\\x_1+x_2=2\left(m+1\right)=2m+2\end{matrix}\right.\)

mà \(x_1-3x_2=0\) nên ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_2=2m+2\\x_1=3x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\cdot x_2\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{3m+3}{2}\\x_2=\dfrac{m+1}{2}\end{matrix}\right.\)

Thay \(x_1=\dfrac{3m+3}{2};x_2=\dfrac{m+1}{2}\) vào \(x_1\cdot x_2=2m+10\), ta được:

\(\dfrac{3m+3}{2}\cdot\dfrac{m+1}{2}=2m+10\)

\(\Leftrightarrow\dfrac{3\left(m+1\right)^2}{4}=2m+10\)

\(\Leftrightarrow3\left(m^2+2m+1\right)=8m+40\)

\(\Leftrightarrow3m^2+6m+3-8m-40=0\)

\(\Leftrightarrow3m^2-2m-37=0\)

\(\Delta=\left(-2\right)^2-4\cdot3\cdot\left(-37\right)=4+444=448>0\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2+8\sqrt{7}}{6}=\dfrac{4\sqrt{7}+1}{3}\left(nhận\right)\\m_2=\dfrac{2-8\sqrt{7}}{6}=\dfrac{1-4\sqrt{7}}{3}\left(nhận\right)\end{matrix}\right.\)

NV
16 tháng 1

b.

Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)

Xét với \(m\ne\dfrac{5}{2}\):

\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)

Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)

Két hợp Viet với điều kiện đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)

Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)

\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)

\(\Rightarrow32m^2-148m+161=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)

NV
16 tháng 1

Câu b của em là 2 ý phân biệt đúng không?

a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)

\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)

=>-16m>=-28

hay m<=7/4

b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)

\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)

=>4m-3=0

hay m=3/4

c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)

=>-16m+4<0

hay m>1/4