K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 5 2020

\(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{6}}=1\)

\(\Rightarrow a+b=45^0\)

NV
7 tháng 10 2021

Đề đúng: \(cos^2\alpha-cos^2\beta=sin^2\beta-sin^2\alpha=\dfrac{1}{1+tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)

7 tháng 10 2021

các bước làm thì sao cô e ko bt giải bài này

NV
29 tháng 5 2020

\(A=tan\left(a+b\right)=tan\frac{\pi}{4}=1\)

Ta có: \(tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}\)

\(\Rightarrow B=tana+tanb=tan\left(a+b\right)\left(1-tana.tanb\right)=1.\left(1-3+2\sqrt{2}\right)=2\sqrt{2}-2\)

\(\left\{{}\begin{matrix}tana+tanb=2\sqrt{2}-2\\tana.tanb=3-2\sqrt{2}\end{matrix}\right.\)

Theo Viet đảo, \(tana;tanb\) là nghiệm của:

\(x^2-\left(2\sqrt{2}-2\right)x+3-2\sqrt{2}=0\)

\(\Leftrightarrow\left(x-\sqrt{2}+1\right)^2=0\Rightarrow x=\sqrt{2}-1\)

\(\Rightarrow tana=tanb=\sqrt{2}-1\Rightarrow a=b=\frac{\pi}{8}\)

NV
20 tháng 7 2020

1.

Ý tưởng thế này: nhìn vế trái phần đáp án có \(tan\left(a+b\right)\) nên cần biến đổi giả thiết xuất hiện \(sin\left(a+b\right)\) , vậy ta làm như sau:

\(sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)

\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right).sina\)

\(\Leftrightarrow2sina.cos\left(a+b\right)=sin\left(a+b\right).cosa\)

\(\Rightarrow2tana=tan\left(a+b\right)\)

2.

Đây là 1 dạng cơ bản, nhìn vào lập tức cần ghép x với 3x (đơn giản vì \(\frac{x+3x}{2}=2x\))

\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}\)

\(=\frac{cos2x}{sin2x}=cot2x\)