Biết a,b thuộc N* và:
\(P=\frac{2+4+6+...+2a}{a}\) ; \(Q=\frac{2+4+6+...+2b}{b}\)
Biết P<Q so sánh a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{25}=\frac{2a+3b-5c}{4+9-25}=\frac{-28}{-12}=\frac{7}{3}\)
\(\Rightarrow\frac{2a}{4}=\frac{7}{3}\Rightarrow2a=\frac{7}{3}.4=\frac{28}{3}\Rightarrow a=\frac{28}{3}:2=\frac{14}{3}\)
\(\Rightarrow\frac{3b}{9}=\frac{7}{3}\Rightarrow3b=\frac{7}{3}.9=21\Rightarrow b=21:3=7\)
\(\Rightarrow\frac{5c}{25}=\frac{7}{3}\Rightarrow5c=\frac{7}{3}.25=\frac{175}{3}\Rightarrow c=\frac{175}{3}:5=\frac{35}{3}\)
Vậy a = .......
b = ..........
c = ..............
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}=\frac{2a+3b-5c}{4+9-20}=\frac{-28}{-7}=4\)
\(\Rightarrow\frac{2a}{4}=4\Rightarrow2a=4.4=16\Rightarrow a=16:2=8\)
\(\Rightarrow\frac{3b}{9}=4\Rightarrow3b=4.9=36\Rightarrow b=36:3=12\)
\(\Rightarrow\frac{5c}{20}=4\Rightarrow5c=4.20=80\Rightarrow c=80:5=16\)
Vậy a = 8
b = 12
c = 16
số số hạng là :
(2n - 2) : 2 + 1 = n (số)
tổng là :
(2n + 2) x n : 2 = n(n + 1)
B = n(n + 1) : n= n + 1
số số hạng là :
(2m - 2) : 2 + 1= m
tổng là :
(2m + 2) x m ; 2 = m(m + 1)
A = m(m + 1) : m = m+1
vì A<B nên m + 1 < n +1
=> m < n
ahihi câu 1 nó cho sẵn òi kìa... m bằng ba cái phân số trên đó há há há :)))
\(Vì:x,y\in N^{sao}\Rightarrow\left\{{}\begin{matrix}\frac{4x}{y}>0\\\frac{4y}{x}>0\end{matrix}\right..\Rightarrow\frac{4x}{y}+\frac{4y}{x}\ge2\sqrt{\frac{4x.4y}{xy}}=8.\text{Dâu "=" xay }ra\Leftrightarrow x=y\)
\(3b^2c^4=3\left(bc^2\right)^2\ge0\Rightarrow\left(3b^2c^4\right)^{15}\ge0\)
\(\left(-2a^2b^3\right)^{10}\ge0\left(\text{mu chan}\right)mà:\left(-2a^2b^3\right)^{10}+\left(3b^2c^4\right)^{15}=0\Rightarrow a^2b^3=0;b^2c^4=0\)
\(+,b=0\Rightarrow\text{voi moị }a,c\text{ đêuf thoa man}\)
\(+,b\ne0\Rightarrow a=c=0\)
#)Giải :
b)Ta có :
\(\left(-2a^2b^3\right)^{10}+\left(3b^2c^4\right)^{15}=0\)
\(\Leftrightarrow2^{10}.a^{20}.b^{30}+3^{15}.b^{30}.c^{60}=0\)
\(\Leftrightarrow\hept{\begin{cases}a^{20}.b^{30}=0\\b^{30}.c^{60}=0\end{cases}\Leftrightarrow\hept{\begin{cases}a.b=0\\b.c=0\end{cases}}\Leftrightarrow b=0;a,b\in Z}\)
Đặt \(A=\frac{2+4+...+2a}{a};B=\frac{2+4+...+2b}{b}\)
Ta có: \(A=\frac{2+4+...+2a}{a}=\frac{2\left(1+2+...+a\right)}{a}=\frac{\frac{2a\left(a+1\right)}{2}}{a}=\frac{a\left(a+1\right)}{a}=a+1\)
\(B=\frac{2+4+...2b}{b}=\frac{2\left(1+2+...+b\right)}{b}=\frac{\frac{2b\left(b+1\right)}{2}}{b}=\frac{b\left(b+1\right)}{b}=b+1\)
Vì A < B => a+1 < b + 1
Xét a,b thuộc Z+ => a < b
Xét a,b thuộc Z- => a > b
2+4+6+8+..............2a=2(1+2+3+.............+a)=2.(a+1).a
=>2+4+6+8+..............2a/a=2.(a+1)
2+4+6+8+..............2b=2(1+2+3+.............+b)=2.(b+1).b
=>2+4+6+8+..............2b/b=2.(b+1)
Vì 2.(a+1)<2.(b+1)
=>a+1<b+1
=>a<b
Vậy a<b
\(P=\frac{\left(2+2a\right).a:2}{a}=\frac{\left(a+1\right)a}{a}=a+1\)
\(Q=\frac{\left(2+2b\right).b:2}{b}=\frac{\left(b+1\right)b}{b}=b+1\)
P < Q => a+1 < b+1 => a < b