K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Phương trình hoành độ giao điểm là:

\(x^2-mx+1=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0

=>(m-2)(m+2)>0

hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)

Theo đề, ta có:

\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)

\(\Leftrightarrow m-1=3\)

hay m=4

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$

$\Leftrightarrow 0=2.1-m+3=5-m$

$\Leftrightarrow m=5$

b.

PT hoành độ giao điểm:

$x^2-(2x-m+3)=0$

$\Leftrightarrow x^2-2x+m-3=0(*)$

Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi:

$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$

Khi đó:
$x_1^2-2x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

$\Rightarrow x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

NV
4 tháng 3 2022

Phương trình hoành độ giao điểm:

\(x^2=2\left(m-1\right)x+m^2+2m\Leftrightarrow x^2-2\left(m-1\right)x-m^2-2m=0\) (1)

\(\Delta'=\left(m-1\right)^2+m^2+2m=2m^2+1>0;\forall m\)

\(\Rightarrow\) (1) có 2 nghiệm pb với mọi m hay (P) luôn cắt (d) tại 2 điểm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m^2-2m\end{matrix}\right.\)

\(x_1^2+x_2^2+6x_1x_2>2016\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+4x_1x_2>2016\)

\(\Leftrightarrow\left(2m-2\right)^2+4\left(-m^2-2m\right)>2016\)

\(\Leftrightarrow-16m>2012\)

\(\Rightarrow m< -\dfrac{503}{4}\)

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(\text{Δ}=\left(-3\right)^2-4\left(-m^2+1\right)=4m^2-4+9=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

 

9 tháng 11 2017

Đáp án C

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn

NV
22 tháng 4 2021

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=\left(m+2\right)x-2m\Leftrightarrow x^2-\left(m+2\right)x+2m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=\left(m+2\right)^2-8m>0\)

\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+\left(m+2\right)x_2=12\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+\left(m+2\right)x_2=12\)

\(\Leftrightarrow\left(m+2\right)x_1-2m+\left(m+2\right)x_2=12\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m-12=0\)

\(\Leftrightarrow\left(m+2\right)^2-2m-12=0\)

\(\Leftrightarrow m^2+2m-8=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=2\left(loại\right)\end{matrix}\right.\)

loading...  loading...  loading...  loading...  loading...  loading...  loading...