Bài 1:Tính giá trị biểu thức:
\(A=3x^3y+6x^2y^2+3xy^3\) Tại x=\(\frac{1}{2}\);y=\(\frac{-1}{3}\)
\(B=x^2y^2+xy+x^3+y^3\) Tại x= -1;y=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = \(\frac{1}{2}\) và y=\(\frac{-1}{3}\) vào biểu thức A ta có : A=\(3\times\left(\frac{1}{2}\right)^3+6\times\left(\frac{1}{2}\right)^2\times\left(-\frac{1}{3}\right)^2+3\times\frac{1}{2}\times\left(-\frac{1}{3}\right)^3\) A=\(\frac{3}{8}+\frac{1}{6}-\frac{1}{18}\) A=\(\frac{35}{72}\)
a: A=2/3x^2y+4x^2y=14/3x^2y
=14/3*9*7=294
b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16
c: C=x^3y^3(2+10-20)=-8x^3y^3
=-8*1^3(-1)^3=8
d: D=xy^2(2018+16-2016)
=18xy^2
=18(-2)*1/9=-4
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{-1}{18}\)
\(=\dfrac{-1}{72}\)
b: \(B=\left(-1\right)^2\cdot3^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)
\(=9-3-1+27=36-4=32\)
a, Thay x = 1/2 ; y = -1/3 ta được
\(A=\dfrac{3.1}{8}\left(-\dfrac{1}{3}\right)+\dfrac{6.1}{4}.\left(\dfrac{1}{9}\right)+\dfrac{3.1}{2}\left(-\dfrac{1}{3}\right)^3\)
\(=-\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{3}{2\left(-27\right)}=-\dfrac{7}{72}\)
b, Thay x = -1 ; y = 3 ta được
\(B=9+\left(-1\right).3-1+27=32\)
bạn thay chỗ nào x là \(\dfrac{1}{2}\) còn chỗ nào y là \(\dfrac{-1}{3}\)nhé
còn như là 3\(x^3\)y thì thành là 3.\(x^3\).y nhé
mk lười nên ko giải ra cho bạn được