K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2020

\(sin^8x+cos^8x=\left(sin^4x+cos^4x\right)^2-2sin^4x.cos^4x\)

\(=\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]^2-2\left(sinx.cosx\right)^4\)

\(=\left[1-\frac{1}{2}sin^22x\right]^2-\frac{1}{8}sin^42x\)

\(=1-sin^22x+\frac{1}{8}sin^42x=1-\frac{1-cos4x}{2}+\frac{1}{8}\left(\frac{1-cos4x}{2}\right)^2\)

\(=\frac{35}{64}+\frac{7}{16}cos4x+\frac{1}{64}cos8x\)

Pt đã cho trở thành:

\(\frac{35}{64}+\frac{7}{16}cos4x+\frac{65}{64}cos8x=2\)

\(\Leftrightarrow\frac{65}{64}\left(2cos^24x-1\right)+\frac{7}{16}cos4x-\frac{93}{64}=0\)

\(\Leftrightarrow130cos^24x+28cos4x-158=0\)

\(\Rightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{158}{130}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow4x=k2\pi\Rightarrow x=\frac{k\pi}{2}\)

NV
6 tháng 10 2021

\(\Leftrightarrow sin8x-\sqrt{2}cos8x=cos6x-\sqrt{2}sin6x\)

\(\Leftrightarrow\dfrac{1}{\sqrt{3}}sin8x-\dfrac{\sqrt{2}}{\sqrt{3}}cos8x=\dfrac{1}{\sqrt{3}}cos6x-\dfrac{\sqrt{2}}{\sqrt{3}}sin6x\)

Đặt \(\dfrac{1}{\sqrt{3}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{\sqrt{2}}{\sqrt{3}}=sina\)

\(\Rightarrow sin8x.cosa-cos8x.sina=cos6x.cosa-sin6x.sina\)

\(\Leftrightarrow sin\left(8x-a\right)=cos\left(6x+a\right)\)

\(\Leftrightarrow sin\left(8x-a\right)=sin\left(\dfrac{\pi}{2}-6x-a\right)\)

\(\Leftrightarrow...\)

11 tháng 9 2016

1)pt\(\Leftrightarrow sin^8x\left(1-2sin^2x\right)=cos^8x\left(2cos^2x-1\right)+\frac{5}{4}cos2x\)

\(\Leftrightarrow sin^8x.cos2x=cos^8x.cos2x+\frac{5}{4}cos2x\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cos2x=0\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\\sin^8x-cos^8x=\frac{5}{4}\left(\cdot\right)\end{array}\right.\)

Xét (*):VT(*)\(\le sin^8x\le1\)\(\Rightarrow\)pt(*) vô ngiệm

Vậy pt có 1 họ nghiệm là \(x=\frac{\pi}{4}+\frac{k\pi}{2},k\in Z\)

11 tháng 9 2016

2)+)sinx=0 không là nghiệm của pt

+)sinx\(\ne0\):

pt\(\Leftrightarrow16sinx.cosx.cos2x.cos4x.cos8x=1\)

\(\Leftrightarrow8sin2x.cos2x.cos4x.cos8x=1\)

\(\Leftrightarrow4sin4x.cos4x.cos8x=1\)\(\Leftrightarrow2sin8x.cos8x=1\Leftrightarrow sin16x=1\Leftrightarrow x=\frac{\pi}{32}+\frac{k\pi}{8},k\in Z\)

KL:...

NV
30 tháng 10 2019

\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)

\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)

\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)

\(=sin^2x+cos^2x+2=3\)

b/

\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)

\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)

\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)

\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)

\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)

\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)

\(=-2+3=1\)

NV
10 tháng 4 2019

\(\left(sin^4x+cos^4x+cos^2x.sin^2x\right)^2-sin^8x\)

\(=\left(sin^4x+cos^2x\left(cos^2x+sin^2x\right)\right)^2-sin^8x\)

\(=\left(sin^4x+cos^2x\right)^2-sin^8x=\left(sin^4x+cos^2x-sin^4x\right)\left(sin^4x+cos^2x+sin^4x\right)\)

\(=cos^2x\left(2sin^4x+cos^2x\right)=2sin^4x.cos^2x+cos^4x\)

Tương tự: \(\left(sin^4x+cos^4x+sin^2xcos^2x\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x\left(sin^2x+cos^2x\right)\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x\right)^2-cos^8x\)

\(=\left(cos^4x+sin^2x-cos^4x\right)\left(cos^4x+sin^2x+cos^4x\right)\)

\(=sin^2x\left(2cos^4x+sin^2x\right)=2sin^2x.cos^4x+sin^4x\)

\(\Rightarrow M=2sin^2x.cos^4x+2sin^2x.cos^2x+sin^2x+cos^4x\)

\(M=2sin^2x.cos^2x\left(cos^2x+sin^2x\right)+sin^4x+cos^4x\)

\(M=2sin^2x.cos^2x+sin^4x+cos^4x\)

\(M=\left(sin^2x+cos^2x\right)^2=1\)