Giải:
\(\sin^8x+\cos^8x+\cos8.x=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sin8x-\sqrt{2}cos8x=cos6x-\sqrt{2}sin6x\)
\(\Leftrightarrow\dfrac{1}{\sqrt{3}}sin8x-\dfrac{\sqrt{2}}{\sqrt{3}}cos8x=\dfrac{1}{\sqrt{3}}cos6x-\dfrac{\sqrt{2}}{\sqrt{3}}sin6x\)
Đặt \(\dfrac{1}{\sqrt{3}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{\sqrt{2}}{\sqrt{3}}=sina\)
\(\Rightarrow sin8x.cosa-cos8x.sina=cos6x.cosa-sin6x.sina\)
\(\Leftrightarrow sin\left(8x-a\right)=cos\left(6x+a\right)\)
\(\Leftrightarrow sin\left(8x-a\right)=sin\left(\dfrac{\pi}{2}-6x-a\right)\)
\(\Leftrightarrow...\)
1)pt\(\Leftrightarrow sin^8x\left(1-2sin^2x\right)=cos^8x\left(2cos^2x-1\right)+\frac{5}{4}cos2x\)
\(\Leftrightarrow sin^8x.cos2x=cos^8x.cos2x+\frac{5}{4}cos2x\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}cos2x=0\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\\sin^8x-cos^8x=\frac{5}{4}\left(\cdot\right)\end{array}\right.\)
Xét (*):VT(*)\(\le sin^8x\le1\)\(\Rightarrow\)pt(*) vô ngiệm
Vậy pt có 1 họ nghiệm là \(x=\frac{\pi}{4}+\frac{k\pi}{2},k\in Z\)
2)+)sinx=0 không là nghiệm của pt
+)sinx\(\ne0\):
pt\(\Leftrightarrow16sinx.cosx.cos2x.cos4x.cos8x=1\)
\(\Leftrightarrow8sin2x.cos2x.cos4x.cos8x=1\)
\(\Leftrightarrow4sin4x.cos4x.cos8x=1\)\(\Leftrightarrow2sin8x.cos8x=1\Leftrightarrow sin16x=1\Leftrightarrow x=\frac{\pi}{32}+\frac{k\pi}{8},k\in Z\)
KL:...
\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)
\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)
\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
\(=sin^2x+cos^2x+2=3\)
b/
\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)
\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)
\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)
\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)
\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)
\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)
\(=-2+3=1\)
\(\left(sin^4x+cos^4x+cos^2x.sin^2x\right)^2-sin^8x\)
\(=\left(sin^4x+cos^2x\left(cos^2x+sin^2x\right)\right)^2-sin^8x\)
\(=\left(sin^4x+cos^2x\right)^2-sin^8x=\left(sin^4x+cos^2x-sin^4x\right)\left(sin^4x+cos^2x+sin^4x\right)\)
\(=cos^2x\left(2sin^4x+cos^2x\right)=2sin^4x.cos^2x+cos^4x\)
Tương tự: \(\left(sin^4x+cos^4x+sin^2xcos^2x\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x\left(sin^2x+cos^2x\right)\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x\right)^2-cos^8x\)
\(=\left(cos^4x+sin^2x-cos^4x\right)\left(cos^4x+sin^2x+cos^4x\right)\)
\(=sin^2x\left(2cos^4x+sin^2x\right)=2sin^2x.cos^4x+sin^4x\)
\(\Rightarrow M=2sin^2x.cos^4x+2sin^2x.cos^2x+sin^2x+cos^4x\)
\(M=2sin^2x.cos^2x\left(cos^2x+sin^2x\right)+sin^4x+cos^4x\)
\(M=2sin^2x.cos^2x+sin^4x+cos^4x\)
\(M=\left(sin^2x+cos^2x\right)^2=1\)
\(sin^8x+cos^8x=\left(sin^4x+cos^4x\right)^2-2sin^4x.cos^4x\)
\(=\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]^2-2\left(sinx.cosx\right)^4\)
\(=\left[1-\frac{1}{2}sin^22x\right]^2-\frac{1}{8}sin^42x\)
\(=1-sin^22x+\frac{1}{8}sin^42x=1-\frac{1-cos4x}{2}+\frac{1}{8}\left(\frac{1-cos4x}{2}\right)^2\)
\(=\frac{35}{64}+\frac{7}{16}cos4x+\frac{1}{64}cos8x\)
Pt đã cho trở thành:
\(\frac{35}{64}+\frac{7}{16}cos4x+\frac{65}{64}cos8x=2\)
\(\Leftrightarrow\frac{65}{64}\left(2cos^24x-1\right)+\frac{7}{16}cos4x-\frac{93}{64}=0\)
\(\Leftrightarrow130cos^24x+28cos4x-158=0\)
\(\Rightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{158}{130}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow4x=k2\pi\Rightarrow x=\frac{k\pi}{2}\)