1.a) CMR 0<\(\frac{a}{b}\)<1;b>0;m>0
\(\frac{a}{m}\)< \(\frac{a+m}{b+m}\)
b) áp dụng để so sánh A= \(\frac{\text{2020^{2018}+1}}{2020^{2019}+1}\)và B=\(^{\frac{2020^{2017+1}}{2020^{2018+1}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )
\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )
\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)
Bài 1:
Ta có: (x+a)(x+b)
\(=x^2+bx+ax+ab\)
\(=x^2+ab+x\left(a+b\right)\)
\(=x^2+ab\)
Bài 2:
Ta có: \(\left(x-m\right)\left(x+n\right)\)
\(=x^2+nx-mx-nm\)
\(=x^2-nm+x\left(n-m\right)\)
\(=x^2-mn\)
1. Ta có với \(a+b=0\) thì
\(VP=\left(x+a\right)\left(x+b\right)\) \(=x^2+ax+bx+ab\)\(=x\left(a+b\right)+x^2+ab\)\(=x^2+ab\)
Mặt khác, \(VT=x^2+ab\)
\(\Rightarrow VP=VT\) ( đpcm )
2. Tương tự bài 1
Ta có với \(m-n=0\) thì
\(VP=\left(x-m\right)\left(x+n\right)=x^2-mx+nx-mn=-x\left(m-n\right)+x^2-mn=x^2-mn\)
Mặt khác, \(VT=x^2-mn\)
\(\Rightarrow VP=VT\) ( đpcm )
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
chắc chắn ko bn
Hữu Thắng: bạn đọc lời giải mà còn không biết được nó đúng hay sai ạ?