Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Do $0< a< b< c< 1$ nên $0< ab< ac< bc$
\(\Rightarrow \frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< \frac{a}{ab+1}+\frac{b}{ab+1}+\frac{c}{ab+1}=\frac{a+b+c}{ab+1}(1)\)
Vì $a,b< 1$ nên \((a-1)(b-1)>0\Leftrightarrow ab+1> a+b\)
$c< 1$ nên $1+ab>c$
\(\Rightarrow 2(ab+1)> a+b+c(2)\)
Từ (1);(2) \(\Rightarrow \frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< \frac{a+b+c}{ab+1}< \frac{2(ab+1)}{ab+1}=2\)
Ta có đpcm.
Do \(a,b,c\) nguyên dương nên \(\left(a,b,c\right)=\left(0;0;0\right),\left(0;0;1\right);\left(0;1;1\right);\left(1;1;1\right)\)
Thử vào biểu thức bên trái đều thấy nó có giá trị nhỏ hơn hoặc bằng 2.
\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)
\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)
Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)