K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

16 tháng 2 2019

\(1,\hept{\begin{cases}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}\left(ĐKXĐ:x\ne0\right)}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=\frac{3}{x}-1\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{cases}}\)

\(\Rightarrow\left(\frac{3}{x}-1\right)^2-\frac{5}{x^2}=-1\)

Đặt \(\frac{1}{x}=a\left(a\ne0\right)\)

\(\Rightarrow\left(3a-1\right)^2-5a^2=-1\)

\(\Leftrightarrow9a^2-6a+1-5a^2+1=0\)

\(\Leftrightarrow4a^2-6a+2=0\)

Làm nốt

2, ĐKXĐ \(x\ge1,y\ge0\)

 \(\hept{\begin{cases}xy+x+y=x^2-2y^2\left(1\right)\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\left(2\right)\end{cases}}\)  

Pt (1) <=> \(xy+x+y+y^2=x^2-y^2\) 

<=> \(y\left(x+y\right)+x+y=\left(x-y\right)\left(x+y\right)\) 

<=> \(\left(x+y\right)\left(y+1\right)=\left(x-y\right)\left(x+y\right)\) 

<=> \(\left(x+y\right)\left(2y+1-x\right)=0\) 

Mà \(x\ge1,y\ge0\) => \(x+y>0\) => \(2y+1-x=0\)<=>  \(x=2y+1\) 

Thay x=2y+1 vào (2) 

Đoạn này bn tự giải tiếp nhé 

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

17 tháng 5 2017

\(\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy=2y^5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\\x^5+x^2y^2\left(x-y\right)+xy\left(2y^3-x^3\right)=2y^5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2y^3-x^3=1\left(1\right)\\x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\left(2\right)\end{cases}}\)

Xét PT (2) ta có:

\(x^5+x^3y^2-x^2y^3+2xy^4-x^4y=2y^5\)

Dễ thấy y = 0 không phải là nghiệm của hệ

Ta đặt \(x=ty\) thì ta có

\(\left(ty\right)^5+\left(ty\right)^3y^2-\left(ty\right)^2y^3+2tyy^4-\left(ty\right)^4y=2y^5\)

\(\Leftrightarrow t^5-t^4+t^3-t^2+2t-2=0\)

\(\Leftrightarrow\left(t-1\right)\left(t^4+t^2+2\right)=0\)

Vì \(t^4+t^2+2>0\)

\(\Rightarrow t=1\)

\(\Rightarrow x=y\)

Thế vô (1) ta được

\(2x^3-x^3=1\)

\(\Leftrightarrow x=y=1\)

16 tháng 5 2017

khó quá,,,,,///