tìm x : | x + 3 | = | 2x - 1 | + 2
Lập bảng xét dấu đàng hoàng nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)/x-2/+/x-5/=3
TH1:
x-2+x-5=3
x+x-2-5=3
2x-7=3
2x=3+7
2x=10
x=10:2
x=5
TH2
x-2+x-5= -3
x+x-2-5=-3
2x-7=-3
2x=-3+7
2x=4
x=4:2
x=2
Vậy x\(\in\){5;2}
f(x) = (4x2 – 1)(–8x2 + x – 3)(2x + 9)
+ Tam thức 4x2 – 1 có hai nghiệm x = –1/2 và x = 1/2, hệ số a = 4 > 0
Do đó 4x2 – 1 mang dấu + nếu x < –1/2 hoặc x > 1/2 và mang dấu – nếu –1/2 < x < 1/2
+ Tam thức –8x2 + x – 3 có Δ = –95 < 0, hệ số a = –8 < 0 nên luôn mang dấu –.
+ Nhị thức 2x + 9 có nghiệm x = –9/2.
Ta có bảng xét dấu:
Kết luận:
f(x) > 0 khi x ∈ (–∞; –9/2) ∪ (–1/2; 1/2)
f(x) = 0 khi x ∈ {–9/2; –1/2; 1/2}
f(x) < 0 khi x ∈ (–9/2; –1/2) ∪ (1/2; +∞)
\(\left(x-2\right)\left(2x+3\right)< 0\)
\(\Leftrightarrow\left(x-2\right)\) và \(\left(2x+3\right)\) trái dấu .
Mà : \(\left(2x+3\right)>\left(x-2\right)\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3>0\\x-2< 0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{-3}{2}\\x< 2\end{array}\right.\)
\(\Leftrightarrow\frac{-3}{2}< x< 2\)
a) Ta có bảng bỏ dấu GTTĐ:
x | x<2 | 2 | 2<x<5 | 5 | 5<x |
|x-2| | 2-x | 0 | x-2 | 3 | x-2 |
|x-5| | 5-x | 3 | 5-x | 0 | x-5 |
Vế Trái | 7-2x | 3 | 3 | 3 | 2x-7 |
+) Với x < 2 : \(7-2x=3\Leftrightarrow2x=4\Leftrightarrow x=2\)( vô lý => Loại )
+) Với x = 2 :\(3=3\)( hợp lý => Chọn )
+) Với 2 < x < 5 : \(3=3\)( hợp lý => Chọn )
+) Với x = 5 : \(3=3\)( hợp lý => Chọn )
+) Với x > 5 : \(2x-7=3\Leftrightarrow2x=10\Leftrightarrow x=5\)( vô lý => Loại )
Vậy \(2\le x\le5.\)
Mình chỉ làm phần a) thôi nhé. 5 phần còn lại bạn làm tương tự nhé !
Nhóc anh chỉ làm 1 phần hướng dẫn nhé các phần khác em nhìn và làm theo.
a) \(|x-2|+|x-5|=3\left(1\right)\)
Ta có: \(x-2=0\Leftrightarrow x=2\)
\(x-5=0\Leftrightarrow x=5\)
Lập bảng xét dấu:
+) Với \(x< 2\Rightarrow\hept{\begin{cases}x-2< 0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=2-x\\|x-5|=5-x\end{cases}}\left(2\right)}\)
Thay (2) vào (1) ta được :
\(\left(2-x\right)+\left(5-x\right)=3\)
\(7-2x=3\)
\(2x=4\)
\(x=2\)( chọn )
+) Với \(2\le x\le5\Rightarrow\hept{\begin{cases}x-2>0\\x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=5-x\end{cases}}}\left(3\right)\)
Thay (3) vào (1) ta được :
\(\left(x-2\right)+\left(5-x\right)=3\)
\(3=3\)( luôn đúng chọn )
+) Với \(x>5\Rightarrow\hept{\begin{cases}x-2>0\\x-5>0\end{cases}}\Rightarrow\hept{\begin{cases}|x-2|=x-2\\|x-5|=x-5\end{cases}\left(4\right)}\)
Thay (4) vào (1) ta được :
\(\left(x-2\right)+\left(x-5\right)=3\)
\(2x-7=3\)
\(2x=10\)
\(x=5\)( loại )
Vậy \(2\le x\le5\)
Đặt A = (x-2)2.(x+1/3).(x-1)
Ta có bảng xét dấu :
x | \(-\frac{1}{3}\) | 1 | 2 | |||
(x-2)2 | + | + | + | + | + | 0 |
x + \(\frac{1}{3}\) | + | 0 | - | + | + | + |
x - 1 | - | - | - | 0 | + | + |
A | - | 0 | + | 0 | + | 0 |
Vậy để A < 0 <=> x < \(-\frac{1}{3}\)