K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Xuất hiện mặt 2 chấm

n(A)=1

n(omega)=6

=>P(A)=1/6

28 tháng 4 2023

\(\Omega=\left\{\left(i\right)|i=1,2,3,4,5,6\right\}\)

\(\Rightarrow n\left(\Omega\right)=6\)

Gọi \(A:``\) Xuất hiện trên hai mặt chấm\("\)

\(A=\left\{3,4,5,6\right\}\)

\(\Rightarrow n\left(A\right)=4\)

\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{6}=\dfrac{2}{3}\)

28 tháng 4 2023

Không gian mẫu: Ω= {1;2;3;4;5;6}   →n(Ω)=6

Gọi biến cố A:" Xuất hiện trên hai mặt chấm"

A ={3;4;5;6}    ➝n(A)= 4

Do đó, p(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}\)=\(\dfrac{4}{6}\)=\(\dfrac{2}{3}\)

 

NV
22 tháng 12 2022

Không gian mẫu: \(6.6=36\)

a.

Lần thứ nhất có 1 khả năng thỏa mãn (3 chấm)

Lần thứ 2 bất kì => có 6 khả năng

\(\Rightarrow1.6=6\) khả năng để lần thứ nhất xuất hiện mặt 3 chấm

Xác suất: \(P=\dfrac{6}{36}=\dfrac{1}{6}\)

b.

Xác suất để cả 2 lần đều ko xuất hiện mặt 2 chấm là: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất để ít nhất 1 lần xuất hiện mặt 2 chấm: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

c.

Các trường hợp có số chấm thuận lợi: (1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(3;1);(3;2);(4;1) có 10 trường hợp

Xác suất: \(P=\dfrac{10}{36}=\dfrac{5}{18}\)

Thầy có thể giải thích hơn về câu a và câu b của bài này được không ạ?

1 tháng 8 2017

Chọn B

Lời giải.

Số phần tử của không gian mẫu là  Ω = 6 . 6 = 36

Gọi A là biến cố "Số chấm trên mặt hai lần gieo có tổng bằng 8".

Gọi số chấm trên mặt khi gieo lần một là x

số chấm trên mặt khi gieo lần hai là y

Theo bài ra, ta có

Khi đó số kết quả thuận lợi của biến cố là  Ω A = 5

Vậy xác suất cần tính P ( A ) = 5 36  

27 tháng 9 2023

\(n_{\Omega}=6^3=216\)

a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"

\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"

Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}

=> \(n_{\overline{A}}=4.4.4=64\)

Vậy, XS của biến cố A là:

\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)

b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"

=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"

=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)

Vậy, XS của biến cố B là:

\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)

 

 

27 tháng 9 2023

Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?

omega={1;2;3;4;5;6}

=>n(omega)=6

A={1;2;3;4}

=>n(A)=4

=>P(A)=4/6=2/3

NV
21 tháng 3 2023

Không gian mẫu: có 6 khả năng xảy ra

Có 4 biến cố thuận lợi là số chấm bằng 1,2,3,4

Do đó xác suất là: \(P=\dfrac{4}{6}=\dfrac{2}{3}\)

30 tháng 7 2018

Đáp án B

Phương pháp:

Phương trình a x 2   +   b x   +   c   =   0 ( a ≠ 0 )  có nghiệm

⇔ ∆ ≥ 0

Gọi A là biến cố: 

"Phương trình  a x 2   +   b x   +   c   = 0 có nghiệm"