tìm GTLN của \(P=\frac{2019}{4x^2+4x+2020}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=4x^2-4x+2019\)
\(=4x^2-4x+1+2018\)
\(=\left(2x-1\right)^2+2018\ge2018\)
\(Amin=2018\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Bài 2:
\(B=-x^2+5x-2020\)
\(=-\left(x^2-5x+2020\right)\)
\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}+2020\right)\)
\(=-\left(x-\frac{5}{2}\right)^2-\frac{8055}{4}\le\frac{-8055}{4}\)
\(Bmax=\frac{-8055}{4}\Leftrightarrow x-\frac{5}{2}=0\)
\(\Leftrightarrow x=\frac{5}{2}\)
\(A=\frac{5}{x^2-4x+2019}=\frac{5}{\left(x-2\right)^2+2015}\)
Có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+2015\ge2015\forall x\\ \Rightarrow\frac{5}{\left(x-2\right)^2+2015}\le\frac{5}{2015}=\frac{1}{403}\forall x\\ \Leftrightarrow A\le\frac{1}{403}\forall x\)
\(\Rightarrow\max\limits_A=\frac{1}{403}\)
Dấu "=" xảy ra: \(\Leftrightarrow\left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
\(A=\frac{3}{4x^2-4x+5}\)
\(=\frac{3}{4x^2-4x+1+4}\)
\(=\frac{3}{\left(2x-1\right)^2+4}\)
\(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(MaxA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
Đặt \(A=\frac{3}{4x^2-4x+5}\)
Biến đổi : \(4x^2-4x+5\)
\(=\left[\left(2x\right)^2-2.2x.1+1^2\right]+4\)
\(=\left(2x-1\right)^2+4\)
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
\(\Rightarrow A\le\frac{3}{4}\)
Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy \(Max_A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
tham khảo
\(A=\frac{4x+1}{4x^2+2}=\frac{4x^2+2}{4x^2+2}-\frac{4x^2-4x+1}{4x^2+2}=1-\frac{\left(2x-1\right)^2}{4x^2+2}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
\(A=\frac{4x+1}{4x^2+2}=\frac{-\left(2x^2+1\right)}{4x^2+2}+\frac{2x^2+4x+2}{4x^2+2}=\frac{-1}{2}+\frac{2\left(x+1\right)^2}{4x^2+2}\ge\frac{-1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-1\)
Bài làm :
\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)
Vì (x-10)2 ≥ 0 với mọi x
\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)
Dấu "=" xảy ra khi
(x-10)2 = 0
<=> x-10=0
<=> x=10
Vậy GTNN của biểu thức là : 1920 <=> x=10
\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì -(x-2)2 ≤ 0 với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)
Dấu "=" xảu ra khi :
x-2=0
<=> x=2
Vậy GTLN của biểu thức là -1 <=> x=2
x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x
Dấu "=" xảy ra <=> x = 10
Vậy GTNN của biểu thức = 1920 <=> x = 10
-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x
Dấu "=" xảy ra <=> x = 2
Vậy GTLN của biểu thức = -1 <=> x = 2
Ta có :
\(M=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\)
Ta thấy \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\left(2x-1\right)^2+4\ge4\)
Do đó \(\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)
( So sánh 2 phân thức cùng tử , tử và mẫu đều dương )
Vậy \(MaxM=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
P/s : Tự làm lại đầy đủ nhé . Mình có bớt 1 số chỗ không cần thiết lắm .
\(P=\frac{2019}{4x^2+4x+2020}\)
Để \(P\)max \(\Leftrightarrow4x^2+4x+2020\)min
Ta có : \(4x^2+4x+2020=4\left(x+\frac{1}{2}\right)^2+2019\ge2019\)
Dấu " = " xảy ra : \(\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(Max_P=1\Leftrightarrow x=-\frac{1}{2}\)