cho n là 1 số tự nhiên . chứng minh rằng :n*1=n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
ta có :
n chia hết cho n
để n + 5 chia hết cho n khi : 5 chia hết cho n.
=>n U(5) = {1, 5}
Vậy : n = 1, 5
bài 2 : n + 10 chia hết cho n + 2
ta có : n + 10 = (n + 2) + 8
n + 2 chia hết cho n + 2
để (n + 2) + 8 chia hết cho n + 2 khi : 8 chia hết cho n + 2.
=>n + 2 U(8) = {1, 2, 4, 8}
Nếu : n + 2 = 1 (loại).
Nếu : n + 2 = 2 => n = 0
Nếu : n + 2 = 4 => n = 2
Nếu : n + 2 = 8 => n = 6
Vậy : n = 0, 2, 6
Ta có ;
5n - 1 = 5n-1 x 5 -1 = 5n-1 x 4
Vậy 5n – 1 chia hết cho 4
bài làm
n*1=n
vì n/n=1 và n là số tự nhiên
C2:
xét 1*1=1
2*1=2
3*1=3
.
.
.
..
.
.
n*1=n
n*1*1=n*1
=> n*1=n*1
=> n=n
subscribe my youtube channe; Azaig. Tks :)))