cho đường tròn tâm o.A,B,C thuộc đường tròn.tia phân giác góc ACB,góc ACB cắt nhau tại I và cắt đường tròn tâm O ở D,E. dây DE cắt AB,AC tại M và N.CM tam giác AMN cân và tam giác DAI cân
có ai làm được không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có CE là tia phân giác của ACB
=> góc ACE= góc BCE
=> cung AE= cung BE
Ta có BD là tia phân giác góc ABC
=> góc ABD= góc DBC
=> cung AD= cung DC
Ta có góc AMN=( cung AD+ EB)
góc ANM=( cung DC+ AE)
mak cung AE= cung BE và cung AD= cung DC
=> góc AMN= góc ANM=> tam giác AMN cân
Ta có BD là đường phân giác thứ 1 (gt)
CE là đường phân giác thứ 2(gt)
mak BD giao CE tại I
=> I là trọng tâm
=> AI là đường phân giác thứ 3
=> góc BAI= góc IAC
Ta có góc IAD= góc IAC+góc CAD
mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )
=>góc IAD=góc BAI+góc ABI(1)
Ta cso góc AID là góc ngoài của tam giác ABI
=> góc AID= góc BAI+góc ABI(2)
từ (1) và (2) =>góc IAD= góc AID
=> tam giác AID cân
Tớ làm lại nha cái kia bị lỗi với lại là cậu tự vẽ hình nha tớ vẽ hình gửi vào đây nó bị lỗi k hiện á
Ta có CE là tia phân giác của ACB
=> góc ACE= góc BCE
=> cung AE= cung BE
Ta có BD là tia phân giác góc ABC
=> góc ABD= góc DBC
=> cung AD= cung DC
Ta có góc AMN=\(\dfrac{1}{2}\)( cung AD+ EB)
góc ANM=\(\dfrac{1}{2}\)( cung DC+ AE)
mak cung AE= cung BE và cung AD= cung DC
=> góc AMN= góc ANM=> tam giác AMN cân
Ta có BD là đường phân giác thứ 1 (gt)
CE là đường phân giác thứ 2(gt)
mak BD giao CE tại I
=> I là trọng tâm
=> AI là đường phân giác thứ 3
=> góc BAI= góc IAC
Ta có góc IAD= góc IAC+góc CAD
mak góc IAC=góc BAI(cmt) và góc CAD= góc ABI(vì góc CAD chắn cung DC và góc ABI chắn cung AD mak cung AD= cung DC (cmt) )
=>góc IAD=góc BAI+góc ABI(1)
Ta cso góc AID là góc ngoài của tam giác ABI
=> góc AID= góc BAI+góc ABI(2)
từ (1) và (2) =>góc IAD= góc AID
=> tam giác AID cân
a, A M N ^ = A N M ^ = 1 2 s đ E D ⏜
Suy ra ∆AMN cân tại A. Kéo dài AI cắt đường tròn (O) tại K. Chứng minh tương tự, ta có ∆AIE và ∆DIA lần lượt cân tại E và D
b, Xét ∆AMN cân tại A có AI là phân giác. Suy ra AI ^ MN tại F và MF = FN. Tương tự với DEAI cân tại E, ta có: AF = IF. Vậy tứ giác AMIN là hình hình hành. Mà AI ^ MN Þ ĐPCM
có ai không