D=\(\frac{2a-3b}{3a-2b}\)vs 6a=5b
CÁC BẠN GIÚP MÌNH VỚI NHÉ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)
a) \(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)
\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)
\(=\left(2ab+2ab-4ab\right)+\left(8a^2-6a^2\right)-b^2\)
\(=2a^2-b^2\)
b) \(\left(3a-2b\right).\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=\left(6a^2-6a^2\right)-\left(9ab+4ab-6ab\right)+6b^2\)
\(=-7ab+b^2\)
c) \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-\left(16bx-8b^2-2x^2+bx\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-bx\)
\(=\left(10bx-16bx-bx\right)-\left(5b^2-8b^2\right)+2x^2\)
\(=-7bx+3b^2+2x^2\)
d) \(2x\left(a+15x\right)+\left(x-6a\right)\left(5a+2x\right)\)
\(=2ax+30x^2+5ax+2x^2-30a^2-12ax\)
\(=\left(2ax+5ax-12ax\right)+\left(30x^2+2x^2\right)-30a^2\)
\(=-5ax+32x^2-30a^2\)
a: =2ab+8a^2-b^2-4ab+2ab-6a^2
=2a^2-b^2
b: =6a^2-9ab-4ab+6b^2-6a^2+6ab
=-7ab+6b^2
c: =10bx-5b^2-16bx+8b^2+2x^2-xb
=3b^2+2x^2-7xb
d: =2xa+30x^2+5ax+2x^2-30a^2-12ax
=32x^2-30a^2-5ax
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
Ta có: a-b=6 => a=6+b thế vào BT trên ta có:
D=\(\frac{3\left(6+b\right)-6}{2\left(6+b\right)+b}-\frac{4b+6}{6+b+3b}\)
= \(\frac{18+3b-6}{12+2b+b}-\frac{4b+6}{6+4b}\)
= \(\frac{3b+12}{3b+12}-\frac{4b+6}{4b+6}\)
= 1-1 =0
Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)
Khi đó a2 + b2 + c2 = 661
<=> (20k)2 + (15k)2 + (6k)2 = 661
<=> 661k2 = 661
<=> k2 = 1
<=> k = \(\pm1\)
Khi k = 1 => a = 20 ; b = 15 ; c = 6
Khi k = -1 => a = -20 ; b = - 15 ; c = -6
Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)
=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)
Ta có : 3a = 2b ==> b = 2/3 x a
Thay b = 2/3 x a vào M ta có :
M=2a - 3b / 3a+2b = 2a - 3. 2/3 .a / 3a + 2. 2/3 .a = 2a - 2a / 3a + 2 . 2/3 . a = 0 / 3a + 2 . 2/3 . a = 0
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(b+d\right)c=\left(a+c\right)d\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2a}{2b}=\dfrac{c}{d}=\dfrac{2a+c}{2b+d}=\dfrac{2a-c}{2b-d}\)
\(\Rightarrow\left(2b-d\right)\left(2a+c\right)=\left(2a-c\right)\left(2b+d\right)\)
\(\Rightarrow dpcm\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{3a}{3b}=\dfrac{5c}{5d}=\dfrac{3a+5c}{3b+5d}=\dfrac{a-3c}{b-3d}\)
\(\Rightarrow\left(b-3d\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)
\(\Rightarrow dpcm\)
Đính chính câu c
\(\Rightarrow\left(3a+5c\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)
Đề bài là tính giá trị của D hả ?
6a=5b => \(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{2}{2}.\frac{a}{5}=\frac{3}{3}.\frac{b}{6}\Rightarrow\frac{2a}{10}=\frac{3b}{18}\)(1)
áp dụng t/c dãy tỉ số = nhau
\(\frac{2a}{10}=\frac{3b}{18}=\frac{2a-3b}{10-18}=\frac{2a-3b}{-8}\)(2)
ta cũng có :\(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{3}{3}.\frac{a}{5}=\frac{2}{2}.\frac{b}{6}\Rightarrow\frac{3a}{15}=\frac{2b}{12}\)(3)
áp dụng t/c dãy tỉ số = nhau
\(\frac{3a}{15}=\frac{2b}{12}=\frac{3a-2b}{15-12}=\frac{3a-2b}{3}\)(4)
Từ (1);(2);(3) và 4
=>\(\frac{2a-3b}{-8}=\frac{3a-2b}{3}\)
=>\(\frac{2a-3b}{3a-2b}=\frac{-8}{3}\)
=> D=-8/3
CẢM ƠN NGUYỄN THÁI SƠN NHÉ.
NHƯNG CHO MÌNH HỎI CÓ BẠN NÀO CÓ CÁCH KHÁC VÀ NGẮN HƠN KHÔNG.CÔ GIÁO MÌNH HƯỚNG DẪN SỬ DỤNG "\(\frac{a}{5}\)=\(\frac{b}{6}\)= k"NHÉ!