Cho pt \(x^2+2\sqrt{3m-1}+\)\(\sqrt{m^2-6m+17}\)=0
Tìm m để pt có nghiệm kép. Tìm nghiệm kép đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: 3m - 1 >= 0 <=> m>= 1/3
Để phương trình có nghiệm kép
<=> \(\Delta=4.\left(3m-1\right)-4\sqrt{m^2-6m+17}=0\)
<=> 9m2 - 6m + 1 = m2 - 6m + 17
<=> 8m2 = 16
<=> \(m=\sqrt{2}\)(Vì m >= 1/3).
Vậy với m = căn 2 thì phương trình có nghiệm kép.
x1 = x2 = \(-2\sqrt{3\sqrt{2}-1}\)
Để phương trình có nghiệm kép: \(\Delta=0\)
<=> \(\left(\sqrt{3m-1}\right)^2-\sqrt{m^2-6m+17}=0\)
<=> \(\sqrt{m^2-6m+17}=3m-1\)
<=> \(\hept{\begin{cases}m^2-6m+17=9m^2-6m+1\\3m-1\ge0\end{cases}}\)
<=> \(\hept{\begin{cases}m^2-2=0\\m\ge\frac{1}{3}\end{cases}}\Leftrightarrow m=\sqrt{2}\)
Vậy:...
Để pt có nghiệm kép suy ra delta = 0
Ta có : \(\Delta=\left(2\sqrt{3m-1}\right)^2-4\sqrt{m^2-6m+17}=0\)
\(< =>4\left(3m-1\right)-4\sqrt{m^2-6m+17}=0\)
\(< =>4\left(3m-1-\sqrt{m^2-6m+17}\right)=0\)
\(< =>3m-1-\sqrt{m^2-6m+17}=0\)
\(< =>\left(3m-1\right)^2=\sqrt{m^2-6m+17}^2\)
\(< =>\left(3m\right)^2-2.3m+1^2=m^2-6m+17\)
\(< =>9m^2-6m=m^2-6m+16\)
\(< =>9m^2-6m-\left(m^2-6m+16\right)=0\)
\(< =>9m^2-m^2-6m+6m-16=0\)
\(< =>8m^2-16=0\)\(< =>m^2-2=0\)
\(< =>\orbr{\begin{cases}m=-\sqrt{2}\\m=\sqrt{2}\end{cases}}\)
Đúng ko ạ ?
b, Để phương trình có 2 nghiệm \(\Delta\ge0\)
hay \(\left(2m+8\right)^2-4.m^2=4m^2+32m+64-4m^2=32m+64\ge0\)
\(\Leftrightarrow32m\ge64\Leftrightarrow m\ge2\)
Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+8\\x_1x_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)
mà \(\left(x_1+x_2\right)^2=4m^2+32m+64\Rightarrow x_1^2+x_2^2=4m^2+32m+64-2x_1x_2\)
\(=4m^2+32m+64-2m^2=2m^2+32m+64\)
Lại có : \(x_1^2+x_2^2=-2\)hay \(2m^2+32m+66=0\Leftrightarrow m=-8+\sqrt{31}\left(ktm\right);m=-8-\sqrt{31}\left(ktm\right)\)
a) Thay m=8 vào phương trình, ta được:
\(x^2-2\cdot\left(8+4\right)x+8^2=0\)
\(\Leftrightarrow x^2-24x+64=0\)
\(\text{Δ}=\left(-24\right)^2-4\cdot1\cdot64=576-256=320\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{24+8\sqrt{5}}{2}=12+4\sqrt{5}\\x_2=\dfrac{24-8\sqrt{5}}{2}=12-4\sqrt{5}\end{matrix}\right.\)
Vậy: Khi m=8 thì phương trình có hai nghiệm phân biệt là \(x_1=12+4\sqrt{5};x_2=12-4\sqrt{5}\)
1.
xét delta có
25 -4(-m-3)
= 25 + 4m + 12
= 4m + 37
để phương trình có nghiệm kép thì delta = 0
=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)
2.
a) xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có nghiệm kép thì delta = 0
=> -4m + 37 = 0
=> m = \(\dfrac{37}{4}\)
b)
xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có 2 nghiệm phân biệt thì delta > 0
=> -4m + 37 > 0
=> m < \(\dfrac{37}{4}\)