K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a) Xét ΔAEF và ΔCED có

AE=CE(E là trung điểm của AC)

\(\widehat{AEF}=\widehat{CED}\)(hai góc đối đỉnh)

FE=DE(gt)

Do đó: ΔAEF=ΔCED(c-g-c)

⇒AF=DC(hai cạnh tương ứng)

b) Xét ΔAED và ΔCEF có

AE=CE(E là trung điểm của AC)

\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)

DE=FE(gt)

Do đó: ΔAED=ΔCEF(c-g-c)

⇒AD=CF(hai cạnh tương ứng) và \(\widehat{A}=\widehat{FCE}\)(hai góc tương ứng)

\(\widehat{A}\)\(\widehat{FCE}\) là hai góc ở vị trí so le trong

nên AD//CF(dấu hiệu nhận biết hai đường thẳng song song)

hay BD//CF

Ta có: AD=CF(cmt)

mà AD=BD(D là trung điểm của AB)

nên DB=CF

Xét ΔDBC và ΔCFD có

DB=CF(cmt)

\(\widehat{BDC}=\widehat{FCD}\)(so le trong, DB//FC)

DC là cạnh chung

Do đó: ΔDBC=ΔCFD(c-g-c)

⇒BC=FD(hai cạnh tương ứng)

Ta có: DE=EF(gt)

mà E nằm giữa D và F

nên E là trung điểm của DF

Ta có: BC=FD(cmt)

\(DE=\frac{FD}{2}\)(E là trung điểm của DF)

nên \(DE=\frac{1}{2}\cdot BC\)(đpcm1)

Ta có: ΔDBC=ΔCFD(cmt)

\(\widehat{BCD}=\widehat{FDC}\)(hai góc tương ứng)

\(\widehat{BCD}\)\(\widehat{FDC}\) là hai góc ở vị trí so le trong

nên DF//BC(dấu hiệu nhận biết hai đường thẳng song song)

hay DE//BC(đpcm2)

3: Ta có: P(0)=2007

\(\Leftrightarrow a\cdot0+b=2007\)

hay b=2007

Ta có: P(1)=2006

\(a+b=2006\)

hay a=2006-b=2006-2007=-1

Vậy: Đa thức P có dạng là -x+2007

22 tháng 8 2018

Thay x = 1, y = 2 vào đơn thức A

Ta có A = 3/16.13.24 = 3. Chọn D

3 tháng 5 2022

\(A=\left(-\dfrac{2}{3}x^3y^4\right)^2.\left(-3x^5y^2\right)^3\)

\(A=\left(\dfrac{4}{9}x^6y^8\right).\left(-27x^{15}y^6\right)\)

\(A=\left(\dfrac{4}{9}.-27\right)\left(x^6.x^{15}\right)\left(y^8.y^{16}\right)\)

\(A=-12x^{21}y^{24}\)

\(\text{Hệ số:-12}\)

\(\text{Bậc:45}\)

\(B=\left(3x^2y\right).\left(-\dfrac{1}{3}x^3y\right).\left(-\dfrac{1}{4}x^3y^4\right)\)

\(B=\left(3.-\dfrac{1}{3}.-\dfrac{1}{4}\right).\left(x^2.x^3.x^3\right).\left(y.y.y^4\right)\)

\(B=\dfrac{1}{4}x^8y^6\)

\(\text{Hệ số:}\dfrac{1}{4}\)

\(\text{Bậc:14}\)

3 tháng 5 2022

Quáo:)

25 tháng 2 2020

Bài 1 :

Ta có : \(15x^4y^n.\left(-2x^5y^9\right)=30x^9y^{17}\)

=> \(15x^4.\left(-y\right)^n.\left(-2\right).\left(-x\right)^5.\left(-y\right)^9=30\left(-x\right)^9.\left(-y\right)^{17}\)

=> \(30\left(-x\right)^9.\left(-y\right)^{n+9}=30.\left(-x\right)^9\left(-y\right)^{17}\)

=> \(\left(x\right)^9.\left(-y\right)^{n+9}=\left(-x\right)^9\left(-y\right)^{17}\)

=> \(x^9y^{n+9}=x^9y^{17}\)

- TH1 : \(x,y=0\)

=> \(0^{n+9}=0^{17}\) ( Luôn đúng \(\forall n\) )

=> \(n\in R\)

- TH2 : \(x,y\ne0\)

=> \(y^{n+9}=y^{17}\)

=> \(n+9=17\)

=> \(n=8\)

25 tháng 2 2020

Nguyễn Ngọc Lộc Nguyễn Lê Phước Thịnh?Amanda?Trần Quốc KhanhPhạm Lan HươngNatsu Dragneel 2005Trung NguyenNo choice teenPhạm Thị Diệu HuyềnTrên con đường thành công không có dấu chân của kẻ lười biếng giúp em với ạ

Câu 2: 

a: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên D là trung điểm của BC

hay DB=DC

b: Xét ΔAHD vuông tại H và ΔAED vuông tại E có

AD chung

\(\widehat{HAD}=\widehat{EAD}\)

DO đó: ΔAHD=ΔAED

Suy ra: DH=DE
hay ΔDHE cân tại D

a: \(10x^3y^2z:\left(-4xy^2z\right)=-\dfrac{5}{2}x^2\)

b: \(32x^2y^3z^4:14y^2z=\dfrac{16}{7}x^2yz^3\)

c: \(25x^4y^5z^3:\left(-3xy^2z\right)=-\dfrac{25}{3}x^3y^3z^2\)

f: \(\left(-35xy^5z\right):\left(-12xy^4\right)=\dfrac{35}{12}yz\)

g: \(x^3y^4:x^3y=y^3\)

h: \(18x^2y^2z:6xyz=3xy\)