Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\frac{1}{2}-\frac{1}{2006}\)
\(A=\frac{501}{1003}\)
Bài 1 :
a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+x^2+\left(-2x+3x\right)+2\)
\(P\left(x\right)=x^3+x^2+x+2\)
Sắp xếp các đa thức theo lũy thừa giảm dần của biến :
\(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\)
\(Q\left(x\right)=\left(4x^3-3x^3\right)+\left(-5x^2+4x^2\right)+\left(3x-4x\right)+1\)
\(Q\left(x\right)=x^3-x^2-x+1\)
Sắp xếp các đa thức theo lũy thừa giảm dần của biến :
\(Q\left(x\right)=x^3-x^2-x+1\)
b, \(P\left(x\right)+Q\left(x\right)=\left(x^3+x^2+x+2\right)+\left(x^3-x^2-x+1\right)\)
\(P\left(x\right)+Q\left(x\right)=x^3+x^2+x+2+x^3-x^2-x+1\)
\(P\left(x\right)+Q\left(x\right)=\left(x^3+x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+\left(2+1\right)\)
\(P\left(x\right)+Q\left(x\right)=2x^3+3\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3+x^2+x+2\right)-\left(x^3-x^2-x+1\right)\)
\(P\left(x\right)-Q\left(x\right)=x^3+x^2+x+2-x^3+x^2+x-1\)
\(P\left(x\right)-Q\left(x\right)=\left(x^3-x^3\right)+\left(x^2+x^2\right)+\left(x+x\right)+\left(2-1\right)\)
\(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)
Bài 2 :
Gọi độ dài cạnh thứ ba của tam giác là x ( x > 0) ; x\(\in\)Z
Theo BĐT tam giác ta có:
\(7-1< x< 1+7\)
\(6< x< 8\)
=> x = 7
=> Chu vi của tam giác đó là : \(1+7+7=15\left(cm\right)\)
Bài 3 :
A C B K E D
a, Xét ∆ACE và ∆AKE có :
\(\widehat{ACE}=\widehat{AKE}=90^o\) (gt)
\(\widehat{CAE}=\widehat{KAE}\)(vì AE là tia phân giác của \(\widehat{BAC}\))
AE là cạnh huyền chung
=> ∆ACE = ∆AKE(cạnh huyền - góc nhọn)
b,
Vì ∆ACE = ∆AKE ( câu a)
=> AC = AK (2 cạnh tương ứng)
CE = KE ( 2 cạnh tương ứng)
=> AE là đường trung trực CK
c, Xét ∆CAB có \(\widehat{C}=90^o\)
\(\widehat{CAB}+\widehat{CBA}=90^o\)(2 góc phụ nhau)
=> \(60^o+\widehat{CBA}=90^o\)
=> \(\widehat{CBA}=90^o-60^o=30^o\) (1)
Vì AE là tia phân giác \(\widehat{BAC}\)
=> \(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{CAB}}{2}=\frac{60^o}{2}=30^o\) (2)
Từ 1,2 => \(\widehat{A_2}=\widehat{ABC}\)
=> ∆AEB là ∆ cân
Vì ∆AEB là ∆ cân có :
\(EK\perp AB\)(gt) => EK là đường cao ứng cạnh AB
=> EK là đường trung tuyến ứng cạnh AB
=> K là trung điểm của AB
=> KA = KB
d,Vì ∆ AEB là ∆ cân => EB = AE
Xét ∆ ACE vuông tại C có \(\widehat{ACE}\)là góc lớn nhất
=> AE là cạnh lớn nhất
=> AE > AC
mà AE = EB
=> EB > AC
Câu 2:
a: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên D là trung điểm của BC
hay DB=DC
b: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)
DO đó: ΔAHD=ΔAED
Suy ra: DH=DE
hay ΔDHE cân tại D