K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2023

Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:

Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:

(3m+2)⋅2+5=−X−1

=> m = -(x+10)/6

Bước 2: Tính giá trị p tại điểm A:

Ta đã biết Y=−X−1, thay vào hàm số p:

p=Y^2+2X−3

p=(−X−1)^2+2X−3

p=X^2+2X+1+2X−3

p=X^2+4X−2

Bước 3: Tìm giá trị nhỏ nhất của p:

Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.

Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:

Xmin​=-b/2a​

Ymin​=f(Xmin​)

Xmin​=−2

Ymin​=(−2)2+4⋅(−2)−2=0

Vậy giá trị nhỏ nhất của p là pmin​=0.

Bước 4: Tìm giá trị m tương ứng với pmin​=0:

Ta đã biết m=−(X+10)/6​, thay pmin​=0 vào đó:

0=−(Xmin​+10)/6​

=> 0=-4/3​

Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin​=0.

 

a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0

\(\Leftrightarrow2m< 1\)

hay \(m< \dfrac{1}{2}\)

9 tháng 6 2015

không hiểu thì hỏi, thấy đúng thì đúng nha. làm bài này mệt thấy mồ

9 tháng 6 2015

hoành độ giao điểm A là nghiệm của phương trình:

(3m+2)x+5=-x-1\(\Leftrightarrow3mx+2x+5+x+1=0\Leftrightarrow\left(3m+3\right)x+6=0\Leftrightarrow3\left(m+1\right)x+6=0\Leftrightarrow3\left[\left(m+1\right)x+2\right]=0\)\(\Rightarrow\left(m+1\right)x+2=0\Leftrightarrow x=-\frac{2}{m+1}\); y=-x-1 => \(y=\frac{2}{m+1}+1=\frac{m+3}{m+1}\)

\(y^2+2x-3=\left(\frac{m+3}{m+1}\right)^2-\frac{4}{m+1}-3=\frac{m^2+6m+9-4m-4}{\left(m+1\right)^2}-3=\frac{m^2+2m+5}{\left(m+1\right)^2}-3\)

\(=\frac{\left(m^2+2m+1\right)+4}{\left(m+1\right)^2}-3=\frac{\left(m+1\right)^2+4}{\left(m+1\right)^2}-3=1+\frac{4}{\left(m+1\right)^2}-3=\frac{4}{\left(m+1\right)^2}-2\ge\frac{4}{1}-2=2\)

=> Min =2 <=> m=0

27 tháng 10 2017

Đáp án là A

15 tháng 9 2023

\(y=x^3-3mx^2+\left(m-1\right)x+2\)

\(y'=3x^2-6mx+m-1\)

\(y''=6x-6=6\left(x-1\right)\)

Để hàm số trên đạt cực trị tại \(x_o=2\) khi và chỉ khi

\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)>0\end{matrix}\right.\) \(\)

\(\Leftrightarrow\left\{{}\begin{matrix}12-12m+m-1=0\\6\left(2-1\right)=6>0\left(luôn.đúng\right)\end{matrix}\right.\)

\(\Leftrightarrow11m=11\)

\(\Leftrightarrow m=1\)

Vậy với \(m=1\) thỏa yêu cầu đề bài.

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Sai điều kiện để hàm số đạt cực đại rồi em.