K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(x^2+x+1)>0

->6-2x=0

->x=3

6 tháng 5 2020
a, (x²+x+1)(6−2x)=0
⇔2(x²+x+1)(3−x)=0
⇔3−x=0
⇔x=3

b, (8x−4)(x²+2x+2)=0
⇔4(2x−1)(x²+2x+2)=0
⇔2x−1=0
⇔x=12HOk tốt
2 tháng 11 2021

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

5: =>4x^2-1/9=0

=>(2x-1/3)(2x+1/3)=0

=>x=1/6 hoặc x=-1/6

6: =>x-1=2

=>x=3

7:=>(2x-1)^3=-27

=>2x-1=-3

=>2x=-2

=>x=-1

8: =>1/8(x-1)^3=-125

=>(x-1)^3=-1000

=>x-1=-10

=>x=-9

3: =>(5x-5)^2-4=0

=>(5x-7)(5x-3)=0

=>x=3/5 hoặc x=7/5

4: =>(5x-1)^2=0

=>5x-1=0

=>x=1/5

1: =>(3x-1)(2x-1)=0

=>x=1/3 hoặc x=1/2

2: =>x^2(2x-3)-4(2x-3)=0

=>(2x-3)(x^2-4)=0

=>(2x-3)(x-2)(x+2)=0

=>x=3/2;x=2;x=-2

14 tháng 7 2023

`@` `\text {Answer}`

`\downarrow`

`1,`

\(2x\left(3x-1\right)+1-3x=0\)

`<=> 2x(3x - 1) - 3x + 1 = 0`

`<=> 2x(3x - 1) - (3x - 1) = 0`

`<=> (2x - 1)(3x-1) = 0`

`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy,  `S = {1/2; 1/3}`

`2,`

\(x^2\left(2x-3\right)+12-8x=0\)

`<=> x^2(2x - 3) - 8x + 12 =0`

`<=> x^2(2x - 3) - (8x - 12) = 0`

`<=> x^2(2x - 3) - 4(2x - 3) = 0`

`<=> (x^2 - 4)(2x - 3) = 0`

`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy, `S = {+-2; 3/2}`

`3,`

\(25\left(x-1\right)^2-4=0\)

`<=> 25(x-1)(x-1) - 4 = 0`

`<=> 25(x^2 - 2x + 1) - 4 = 0`

`<=> 25x^2 - 50x + 25 - 4 = 0`

`<=> 25x^2 - 15x - 35x + 21 = 0`

`<=> (25x^2 - 15x) - (35x - 21) = 0`

`<=> 5x(5x - 3) - 7(5x - 3) = 0`

`<=> (5x - 7)(5x - 3) = 0`

`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)

`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy, `S = {7/5; 3/5}`

`4,`

\(25x^2-10x+1=0\)

`<=> 25x^2 - 5x - 5x + 1 = 0`

`<=> (25x^2 - 5x) - (5x - 1) = 0`

`<=> 5x(5x - 1) - (5x - 1) = 0`

`<=> (5x - 1)(5x-1)=0`

`<=> (5x-1)^2 = 0`

`<=> 5x - 1 = 0`

`<=> 5x = 1`

`<=> x = 1/5`

Vậy,` S = {1/5}.`

1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow2x^2+6x-6x+18=0\)

\(\Leftrightarrow2x^2+18=0\left(loại\right)\)

2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\)

hay \(x=-\dfrac{3}{2}\)

3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

4: Ta có: \(2x\left(x-5\right)-3x+15=0\)

\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

5: Ta có: \(3x\left(x+4\right)-2x-8=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

30 tháng 7 2021

1)(x2-4x+16)(x+4)-x(x+1)(x+2)+3x2=0

\(\Rightarrow\)(x3+64)-x(x2+2x+x+2)+3x2=0

\(\Rightarrow\)x3+64-x3-2x2-x2-2x+3x2=0

\(\Rightarrow\)-2x+64=0

\(\Rightarrow\)-2x=-64

\(\Rightarrow\)x=\(\dfrac{-64}{-2}\)

\(\Rightarrow x=32\)

30 tháng 7 2021

2)(8x+2)(1-3x)+(6x-1)(4x-10)=-50

\(\Rightarrow\)8x-24x2+2-6x+24x2-60x-4x+10=50

\(\Rightarrow\)-62x+12=50

\(\Rightarrow\)-62x=50-12

\(\Rightarrow\)-62x=38

\(\Rightarrow\)x=\(-\dfrac{38}{62}=-\dfrac{19}{31}\)

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

23 tháng 2 2021

1)\(2x+6=0\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Vậy : x=3 là nghiệm PT

2)\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2=4\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)

Vậy:....

3)\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)

\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)

\(\Leftrightarrow-x+21=0\)

\(\Leftrightarrow-x=-21\)

\(\Leftrightarrow x=21\)

Vậy:......

4) \(x\left(x^2-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy:........

5)\(4x+20=0\)

\(\Leftrightarrow4x=-20\)

\(\Leftrightarrow x=-5\)

Vậy:...

6)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

\(\Rightarrow x\left(x+3\right)+\left(x+1\right)\left(x-2\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+3x+x^2-2x+x-2-2x^2-2x=0\)

\(\Leftrightarrow-2=0\)(vô lí)

Vậy : PT vô nghiệm

7)\(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\Leftrightarrow\frac{-4+2x}{6}=\frac{3-x}{4}\)

\(\Rightarrow2\left(-4+2x\right)=3\left(3-x\right)\)

\(\Leftrightarrow-8+4x-9+3x=0\)

\(\Leftrightarrow-17+7x=0\)

\(\Leftrightarrow7x=17\)

\(\Leftrightarrow x=\frac{17}{7}\)

8) Làm tương tự

9) \(2\left(x+1\right)=5x-7\)

\(\Leftrightarrow2x+2-5x+7=0\)

\(\Leftrightarrow-3x+9=0\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\)

#H

1.\(2x+6=0\)

\(\Leftrightarrow2\left(x+3\right)=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)

2.\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-4=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{3;-1\right\}\)

3.\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

ĐKXĐ :\(x\ne\pm2\)

Ta có ; \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{x^2-4x+4+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{x^2-x+10}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-x+10=x^2-11\)

\(\Leftrightarrow21-x=0\)

\(\Leftrightarrow x=21\)(Thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là \(S=\left\{21\right\}\)

4.\(x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)

hoặc \(x-1=0\)

hoặc \(x+1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{0;\pm1\right\}\)

5.\(4x+20=0\)

\(\Leftrightarrow4\left(x+5\right)=0\)

\(\Leftrightarrow x+5=0\)

\(\Leftrightarrow x=-5\)

Vậy tập nghiệm của PT là \(S=\left\{-5\right\}\)

6.\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ : \(x\notin\left\{-1;0\right\}\)

Ta có : \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2+3x+x^2-x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2+2x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)

\(\Rightarrow2x^2+2x-2=2x^2+2x\)

\(\Leftrightarrow0x=2\)(Vô lí)

Vậy PT vô nghiệm 

7.\(1+\frac{2x-5}{6}=\frac{3-x}{4}\)

\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{3\left(3-x\right)}{12}\)

\(\Leftrightarrow\frac{12+4x-10}{12}=\frac{9-3x}{12}\)

\(\Leftrightarrow\frac{4x+2}{12}=\frac{9-3x}{12}\)

\(\Rightarrow4x+2=9-3x\)

\(\Leftrightarrow7x=7\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)

8.\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

ĐKXĐ : \(x\notin\left\{0;2\right\}\)

Ta có : \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2+x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+x+2=2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)(Không thỏa mãn ĐKXĐ)_(Thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là \(S=\left\{-1\right\}\)

9.\(2\left(x+1\right)=5x-7\)

\(\Leftrightarrow2x+2=5x-7\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)

12 tháng 8 2021

1/ x2-3x+2=0

⇒ (x2-2x)-(x-2)=0

⇒ x(x-2)-(x-2)=0

⇒ (x-1)(x-2)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2) x2-6x+5=0

⇒x2-6x+9-4=0

⇒(x2-6x+9)-22=0

⇒(x-3)2-22=0

⇒(x-3-2)(x-3+2)=0

⇒(x-5)(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

3) 2x2+5x+3=0

⇒ (2x2+2x)+(3x+3)=0

⇒ 2x(x+1)+3(x+1)=0

⇒ (x+1)(2x+3)=0

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-1,5\end{matrix}\right.\)

4) x2-8x+15=0

⇒ (x2-8x+16)-1=0

⇒ (x-4)2-12=0

⇒ (x-4-1)(x-4+1)=0

⇒ (x-5)(x-3)=0

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

5) x2-x-12=0

⇒ (x2-4x)+(3x-12)=0

⇒ x(x-4)+3(x-4)=0

⇒ (x-4)(x+3)=0

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

1: Ta có: \(x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: Ta có: \(x^2-6x+5=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

3: Ta có: \(2x^2+5x+3=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

4: Ta có: \(x^2-8x+15=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)

5: Ta có: \(x^2-x-12=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

8 tháng 7 2017

\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x\left(-x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}

\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)

\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)

\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)

Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian