\(2^{x+1}=\dfrac{64.16}{2^8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x . 26 . 24 = 23 . 260
2x + 6 + 4 = 23 + 60
2x + 10 = 263
=> x + 10 = 63
x = 63 - 10
x = 53
a/ 5x.52.53=52.540
5x.55=542
5x=537
x=37
b/ 2x.26.24=23.260
2x.210=263
2x=253
x=53
\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)
\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)
\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{32}{1-x^{32}}\)
\(\dfrac{3}{2}x-0,2=\dfrac{3}{5}\)
\(\dfrac{3}{2}x-\dfrac{1}{5}=\dfrac{3}{5}\)
\(\dfrac{3}{2}x=\dfrac{3}{5}+\dfrac{1}{5}\)
\(\dfrac{3}{2}x=\dfrac{4}{5}\)
\(x=\dfrac{4}{5}:\dfrac{3}{2}\)
\(x=\dfrac{4}{5}\cdot\dfrac{2}{3}\)
\(x=\dfrac{8}{15}\)
\(\dfrac{1}{3}+x=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}-\dfrac{1}{3}\)
\(x=\dfrac{9}{12}-\dfrac{4}{12}\)
\(x=\dfrac{5}{12}\)
\(1\dfrac{1}{2}x-\dfrac{2}{5}=\dfrac{1}{4}\)
\(\dfrac{3}{2}x-\dfrac{2}{5}=\dfrac{1}{4}\)
\(\dfrac{3}{2}x=\dfrac{1}{4}+\dfrac{2}{5}\)
\(\dfrac{3}{2}x=\dfrac{13}{20}\)
\(x=\dfrac{13}{20}:\dfrac{3}{2}\)
\(x=\dfrac{13}{20}\cdot\dfrac{2}{3}\)
\(x=\dfrac{13}{30}\)
\(\dfrac{11}{8}-\dfrac{3}{8}\cdot x=\dfrac{1}{8}\)
\(\dfrac{3}{8}\cdot x=\dfrac{11}{8}-\dfrac{1}{8}\)
\(\dfrac{3}{8}\cdot x=\dfrac{5}{4}\)
\(x=\dfrac{5}{4}:\dfrac{3}{8}\)
\(x=\dfrac{5}{4}\cdot\dfrac{8}{3}\)
\(x=\dfrac{10}{3}\)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
a)48:64.16 bằng 48.43.4^2
Bằng 413
b)53:52+22.3 bằng 5 +12 bằng 17
c)56:54+3.33-80 bằng 5^2 +34-1 bằng 105
a) ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-2x=-2+9\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\dfrac{7}{19}\)
Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
\(2^{x+1}=\dfrac{64.16}{2^8}\\ \Rightarrow2^{x+1}=\dfrac{2^6.2^4}{2^8}\\ \Rightarrow2^{x+1}=2^2\\ \Rightarrow x+1=2\\ \Rightarrow x=1\)